working

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2518
  • Wer: 0.5902
  • Cer: 0.0676

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 13000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
10.4868 0.15 100 13.8019 1.0 0.9317
4.7063 0.3 200 9.0935 1.0 0.9692
3.624 0.45 300 6.7956 1.0 0.9692
3.5139 0.6 400 4.9444 1.0 0.9692
3.4538 0.74 500 4.4408 1.0 0.8260
3.393 0.89 600 4.1983 1.0 0.8183
3.3836 1.04 700 3.9939 1.0 0.7414
3.3494 1.19 800 3.8468 1.0 0.7642
3.2885 1.34 900 3.4016 1.0 0.7987
3.2538 1.49 1000 3.1741 1.0 0.8071
3.2633 1.64 1100 3.1409 1.0008 0.7878
3.1524 1.79 1200 2.9351 1.0 0.7935
3.0518 1.93 1300 2.7497 1.0 0.7559
2.807 2.08 1400 2.0357 0.9992 0.6716
2.3203 2.23 1500 1.2459 0.9927 0.4256
1.9018 2.38 1600 0.8000 0.9513 0.2472
1.6926 2.53 1700 0.6204 0.9066 0.1800
1.5501 2.68 1800 0.5426 0.8619 0.1377
1.4654 2.83 1900 0.4881 0.8050 0.1199
1.4087 2.98 2000 0.4747 0.7961 0.1153
1.3228 3.12 2100 0.4334 0.7953 0.1138
1.3292 3.27 2200 0.4214 0.7604 0.1072
1.3123 3.42 2300 0.3850 0.7400 0.0998
1.3417 3.57 2400 0.4069 0.7595 0.1039
1.2557 3.72 2500 0.3867 0.7246 0.0970
1.2588 3.87 2600 0.3678 0.7311 0.0952
1.2602 4.02 2700 0.3682 0.7262 0.0937
1.1774 4.17 2800 0.3530 0.7043 0.0908
1.2075 4.32 2900 0.3343 0.7076 0.0885
1.1085 4.46 3000 0.3542 0.7124 0.0898
1.1451 4.61 3100 0.3325 0.6872 0.0870
1.1721 4.76 3200 0.3318 0.6848 0.0858
1.1549 4.91 3300 0.3145 0.6816 0.0862
1.1276 5.06 3400 0.3133 0.6613 0.0822
1.1193 5.21 3500 0.3117 0.6783 0.0832
1.158 5.36 3600 0.3111 0.6856 0.0841
1.1235 5.51 3700 0.3130 0.6856 0.0848
1.1075 5.65 3800 0.3144 0.6621 0.0831
1.0834 5.8 3900 0.3228 0.6694 0.0873
1.0751 5.95 4000 0.3116 0.6734 0.0823
1.1114 6.1 4100 0.3022 0.6718 0.0812
1.0025 6.25 4200 0.3149 0.6807 0.0826
1.0488 6.4 4300 0.2957 0.6377 0.0799
1.0602 6.55 4400 0.3002 0.6604 0.0800
1.0694 6.7 4500 0.3003 0.6580 0.0799
1.0583 6.85 4600 0.2850 0.6182 0.0777
1.0737 6.99 4700 0.2876 0.6288 0.0785
1.0123 7.14 4800 0.3064 0.6791 0.0806
1.0305 7.29 4900 0.2925 0.6271 0.0796
1.0269 7.44 5000 0.2978 0.6271 0.0796
0.9634 7.59 5100 0.2943 0.6353 0.0791
0.986 7.74 5200 0.2947 0.6556 0.0795
1.0039 7.89 5300 0.2891 0.6580 0.0793
0.9928 8.04 5400 0.2901 0.6426 0.0786
0.9799 8.18 5500 0.2827 0.6385 0.0775
0.9952 8.33 5600 0.3063 0.6677 0.0791
0.9874 8.48 5700 0.2922 0.6401 0.0780
0.9716 8.63 5800 0.2806 0.6060 0.0748
1.0133 8.78 5900 0.2824 0.6328 0.0759
0.9665 8.93 6000 0.2849 0.6442 0.0782
0.9516 9.08 6100 0.2795 0.6158 0.0766
0.9864 9.23 6200 0.2998 0.6336 0.0788
0.9652 9.38 6300 0.2812 0.6174 0.0760
0.9518 9.52 6400 0.2824 0.6182 0.0764
0.9447 9.67 6500 0.2872 0.6434 0.0777
1.0079 9.82 6600 0.2668 0.6158 0.0753
0.9996 9.97 6700 0.2721 0.6084 0.0749
0.9042 10.12 6800 0.2755 0.6109 0.0746
0.965 10.27 6900 0.2747 0.6093 0.0751
0.9172 10.42 7000 0.2799 0.6247 0.0763
0.9441 10.57 7100 0.2833 0.6231 0.0771
0.9417 10.71 7200 0.2736 0.6117 0.0754
0.9091 10.86 7300 0.2783 0.6182 0.0760
0.96 11.01 7400 0.2674 0.6149 0.0759
0.8866 11.16 7500 0.2703 0.6198 0.0749
0.9357 11.31 7600 0.2796 0.6117 0.0769
0.9144 11.46 7700 0.2743 0.6084 0.0753
0.9456 11.61 7800 0.2675 0.6206 0.0750
0.9022 11.76 7900 0.2680 0.6093 0.0736
0.9047 11.9 8000 0.2753 0.6158 0.0766
0.9151 12.05 8100 0.2772 0.6328 0.0761
0.9123 12.2 8200 0.2879 0.6247 0.0758
0.8731 12.35 8300 0.2764 0.6093 0.0743
0.8745 12.5 8400 0.2796 0.6214 0.0751
0.8812 12.65 8500 0.2684 0.6060 0.0739
0.9228 12.8 8600 0.2678 0.6149 0.0744
0.9029 12.95 8700 0.2718 0.5963 0.0738
0.934 13.1 8800 0.2700 0.6174 0.0737
0.8622 13.24 8900 0.2789 0.6231 0.0757
0.848 13.39 9000 0.2725 0.6060 0.0735
0.8727 13.54 9100 0.2602 0.6133 0.0737
0.8705 13.69 9200 0.2661 0.6247 0.0748
0.8724 13.84 9300 0.2658 0.6190 0.0741
0.8609 13.99 9400 0.2677 0.6320 0.0753
0.8836 14.14 9500 0.2692 0.6353 0.0753
0.8419 14.29 9600 0.2715 0.6158 0.0734
0.8583 14.43 9700 0.2596 0.6060 0.0726
0.882 14.58 9800 0.2636 0.6198 0.0749
0.8396 14.73 9900 0.2627 0.6125 0.0739
0.8832 14.88 10000 0.2676 0.6271 0.0739
0.8647 15.03 10100 0.2669 0.6190 0.0742
0.8674 15.18 10200 0.2677 0.6158 0.0741
0.8621 15.33 10300 0.2605 0.6028 0.0711
0.8946 15.48 10400 0.2630 0.6036 0.0722
0.8544 15.62 10500 0.2644 0.6133 0.0737
0.8684 15.77 10600 0.2624 0.5963 0.0731
0.861 15.92 10700 0.2626 0.5987 0.0735
0.8322 16.07 10800 0.2635 0.6003 0.0736
0.8277 16.22 10900 0.2729 0.6214 0.0742
0.8463 16.37 11000 0.2663 0.6068 0.0739
0.8506 16.52 11100 0.2629 0.6003 0.0728
0.8005 16.67 11200 0.2657 0.6206 0.0748
0.8336 16.82 11300 0.2625 0.6003 0.0721
0.8676 16.96 11400 0.2691 0.6174 0.0733
0.8028 17.11 11500 0.2635 0.6003 0.0720
0.85 17.26 11600 0.2602 0.6011 0.0726
0.8366 17.41 11700 0.2658 0.6068 0.0729
0.8098 17.56 11800 0.2621 0.6003 0.0720
0.8666 17.71 11900 0.2600 0.5963 0.0734
0.8271 17.86 12000 0.2618 0.6076 0.0734
0.8018 18.01 12100 0.2669 0.6117 0.0737
0.8471 18.15 12200 0.2630 0.6028 0.0727
0.8573 18.3 12300 0.2666 0.6117 0.0735
0.8331 18.45 12400 0.2639 0.6060 0.0727
0.8161 18.6 12500 0.2606 0.6044 0.0731
0.8021 18.75 12600 0.2591 0.6019 0.0726
0.8236 18.9 12700 0.2611 0.6036 0.0722
0.7332 19.05 12800 0.2610 0.6060 0.0732
0.8267 19.2 12900 0.2599 0.6028 0.0733
0.8296 19.35 13000 0.2608 0.6036 0.0731

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
1
Inference API
Unable to determine this model's library. Check the docs .