testlaibasettsgopdata

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0930
  • Wer: 0.1682

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.2716 1.05 500 3.0550 1.0
1.8262 2.11 1000 0.2669 0.3023
0.5469 3.16 1500 0.1809 0.2281
0.3541 4.21 2000 0.1541 0.2185
0.3367 5.26 2500 0.1432 0.2054
0.2792 6.32 3000 0.1218 0.2023
0.2411 7.37 3500 0.1136 0.2029
0.2041 8.42 4000 0.1423 0.2025
0.2262 9.47 4500 0.1294 0.1968
0.1921 10.53 5000 0.1237 0.1952
0.1877 11.58 5500 0.1043 0.1890
0.176 12.63 6000 0.1272 0.1935
0.1236 13.68 6500 0.1352 0.1902
0.1473 14.74 7000 0.1257 0.1874
0.1748 15.79 7500 0.1190 0.1854
0.1147 16.84 8000 0.1213 0.1914
0.1508 17.89 8500 0.1262 0.1813
0.1061 18.95 9000 0.1148 0.1802
0.1182 20.0 9500 0.1034 0.1758
0.1144 21.05 10000 0.1123 0.1769
0.0885 22.11 10500 0.1043 0.1735
0.0797 23.16 11000 0.1004 0.1712
0.0729 24.21 11500 0.1045 0.1703
0.0718 25.26 12000 0.1064 0.1712
0.0668 26.32 12500 0.1050 0.1687
0.0599 27.37 13000 0.0965 0.1677
0.0702 28.42 13500 0.0930 0.1682
0.0942 29.47 14000 0.0959 0.1674

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.5.1+cu121
  • Datasets 1.18.3
  • Tokenizers 0.20.3
Downloads last month
3
Inference API
Unable to determine this model's library. Check the docs .