|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for xception41p.ra3_in1k |
|
|
|
An Aligned Xception image classification model. Pretrained on ImageNet-1k in `timm` by Ross Wightman using RandAugment `RA3` recipe. Related to `B` recipe in [ResNet Strikes Back](https://arxiv.org/abs/2110.00476). |
|
|
|
This Xception variation uses a `timm` specific pre-activation Xception block. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 26.9 |
|
- GMACs: 9.2 |
|
- Activations (M): 39.9 |
|
- Image size: 299 x 299 |
|
- **Papers:** |
|
- Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation: https://arxiv.org/abs/1802.02611 |
|
- Xception: Deep Learning with Depthwise Separable Convolutions: https://arxiv.org/abs/1610.02357 |
|
- ResNet strikes back: An improved training procedure in timm: https://arxiv.org/abs/2110.00476 |
|
- **Dataset:** ImageNet-1k |
|
- **Original:** https://github.com/huggingface/pytorch-image-models |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('xception41p.ra3_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'xception41p.ra3_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 128, 150, 150]) |
|
# torch.Size([1, 256, 75, 75]) |
|
# torch.Size([1, 728, 38, 38]) |
|
# torch.Size([1, 1024, 19, 19]) |
|
# torch.Size([1, 2048, 10, 10]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'xception41p.ra3_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 2048, 10, 10) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@inproceedings{deeplabv3plus2018, |
|
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation}, |
|
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam}, |
|
booktitle={ECCV}, |
|
year={2018} |
|
} |
|
``` |
|
```bibtex |
|
@misc{chollet2017xception, |
|
title={Xception: Deep Learning with Depthwise Separable Convolutions}, |
|
author={François Chollet}, |
|
year={2017}, |
|
eprint={1610.02357}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
```bibtex |
|
@inproceedings{wightman2021resnet, |
|
title={ResNet strikes back: An improved training procedure in timm}, |
|
author={Wightman, Ross and Touvron, Hugo and Jegou, Herve}, |
|
booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future} |
|
} |
|
``` |
|
|