|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
- transformers |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
- imagenet-21k-p |
|
--- |
|
# Model card for tresnet_v2_l.miil_in21k_ft_in1k |
|
|
|
A TResNet image classification model. Pretrained on ImageNet-21K-P ("ImageNet-21K Pretraining for the Masses", a 11k subset of ImageNet-22k) and fine-tuned on ImageNet-1k by paper authors. |
|
|
|
The weights for this model have been remapped and modified from the originals to work with standard BatchNorm instead of InplaceABN. `inplace_abn` can be problematic to build recently and ends up slower with `memory_format=channels_last`, torch.compile(), etc. |
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 46.2 |
|
- GMACs: 8.8 |
|
- Activations (M): 16.3 |
|
- Image size: 224 x 224 |
|
- **Papers:** |
|
- TResNet: High Performance GPU-Dedicated Architecture: https://arxiv.org/abs/2003.13630 |
|
- ImageNet-21K Pretraining for the Masses: https://arxiv.org/abs/2104.10972 |
|
- **Dataset:** ImageNet-1k |
|
- **Pretrain Dataset:** ImageNet-21K-P |
|
- **Original:** |
|
- https://github.com/Alibaba-MIIL/TResNet |
|
- https://github.com/Alibaba-MIIL/ImageNet21K |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('tresnet_v2_l.miil_in21k_ft_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'tresnet_v2_l.miil_in21k_ft_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 256, 56, 56]) |
|
# torch.Size([1, 512, 28, 28]) |
|
# torch.Size([1, 1024, 14, 14]) |
|
# torch.Size([1, 2048, 7, 7]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'tresnet_v2_l.miil_in21k_ft_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 2048, 7, 7) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@misc{ridnik2020tresnet, |
|
title={TResNet: High Performance GPU-Dedicated Architecture}, |
|
author={Tal Ridnik and Hussam Lawen and Asaf Noy and Itamar Friedman}, |
|
year={2020}, |
|
eprint={2003.13630}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
```bibtex |
|
@misc{ridnik2021imagenet21k, |
|
title={ImageNet-21K Pretraining for the Masses}, |
|
author={Tal Ridnik and Emanuel Ben-Baruch and Asaf Noy and Lihi Zelnik-Manor}, |
|
year={2021}, |
|
eprint={2104.10972}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
|