metadata
license: apache-2.0
base_model: Sandiago21/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.85
distilhubert-finetuned-gtzan
This model is a fine-tuned version of Sandiago21/distilhubert-finetuned-gtzan on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9021
- Accuracy: 0.85
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2617 | 1.0 | 57 | 0.8101 | 0.76 |
0.3005 | 2.0 | 114 | 0.8589 | 0.82 |
0.0123 | 3.0 | 171 | 1.0596 | 0.8 |
0.0141 | 4.0 | 228 | 1.0238 | 0.81 |
0.0047 | 5.0 | 285 | 0.8953 | 0.83 |
0.0889 | 6.0 | 342 | 0.8765 | 0.86 |
0.0482 | 7.0 | 399 | 1.1115 | 0.83 |
0.0013 | 8.0 | 456 | 1.0884 | 0.84 |
0.0009 | 9.0 | 513 | 1.0055 | 0.85 |
0.0008 | 10.0 | 570 | 0.9021 | 0.85 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3