Clean up ec2 path
#2
by
fedyanin
- opened
- README.md +78 -155
- config.json +1 -0
- special_tokens_map.json +1 -1
- tokenizer.json +2 -2
- tokenizer_config.json +4 -4
README.md
CHANGED
@@ -6,35 +6,25 @@ language:
|
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
9 |
-
base_model: tiiuae/Falcon3-7B-Base
|
10 |
-
license: other
|
11 |
-
license_name: falcon-llm-license
|
12 |
-
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
|
13 |
-
library_name: transformers
|
14 |
---
|
15 |
|
16 |
-
<div align="center">
|
17 |
-
<img src="https://huggingface.co/datasets/tiiuae/documentation-images/resolve/main/general/falco3-logo.png" alt="drawing" width="500"/>
|
18 |
-
</div>
|
19 |
-
|
20 |
# Falcon3-7B-Instruct
|
21 |
|
22 |
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
23 |
|
24 |
-
This repository contains the **Falcon3-7B-Instruct**. It achieves state of art results (at
|
25 |
Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.
|
26 |
|
27 |
## Model Details
|
28 |
- Architecture
|
29 |
- Transformer based causal decoder only architecture
|
30 |
- 28 decoder blocks
|
31 |
-
- Grouped query attention (GQA) for faster inference: 12 query heads and 4
|
32 |
- Wider head dimension: 256
|
33 |
- High RoPE value to support long context understanding: 1000042
|
34 |
-
-
|
35 |
-
-
|
36 |
-
|
37 |
-
- Pretrained on 14 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips
|
38 |
- Postrained on 1.2 million samples of STEM, conversations, code, safety and function call data
|
39 |
- Supports EN, FR, ES, PT
|
40 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
@@ -58,7 +48,7 @@ model_name = "tiiuae/Falcon3-7B-Instruct"
|
|
58 |
model = AutoModelForCausalLM.from_pretrained(
|
59 |
model_name,
|
60 |
torch_dtype="auto",
|
61 |
-
device_map="auto"
|
62 |
)
|
63 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
64 |
|
@@ -90,67 +80,8 @@ print(response)
|
|
90 |
|
91 |
<br>
|
92 |
|
93 |
-
|
94 |
-
We report the
|
95 |
-
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
96 |
-
<colgroup>
|
97 |
-
<col style="width: 10%;">
|
98 |
-
<col style="width: 7%;">
|
99 |
-
<col style="width: 7%;">
|
100 |
-
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
101 |
-
</colgroup>
|
102 |
-
<thead>
|
103 |
-
<tr>
|
104 |
-
<th>Benchmark</th>
|
105 |
-
<th>Llama-3.1-8B-Instruct</th>
|
106 |
-
<th>Qwen2.5-7B-Instruct</th>
|
107 |
-
<th>Falcon3-7B-Instruct</th>
|
108 |
-
</tr>
|
109 |
-
</thead>
|
110 |
-
<tbody>
|
111 |
-
<tr>
|
112 |
-
<td>IFEval</td>
|
113 |
-
<td><b>78.56</b></td>
|
114 |
-
<td>75.85</td>
|
115 |
-
<td>76.12</td>
|
116 |
-
</tr>
|
117 |
-
<tr>
|
118 |
-
<td>BBH (3-shot)</td>
|
119 |
-
<td>29.89</td>
|
120 |
-
<td>34.89</td>
|
121 |
-
<td><b>37.92</b></td>
|
122 |
-
</tr>
|
123 |
-
<tr>
|
124 |
-
<td>MATH Lvl-5 (4-shot)</td>
|
125 |
-
<td>19.34</td>
|
126 |
-
<td>0.00</td>
|
127 |
-
<td><b>31.87</b></td>
|
128 |
-
</tr>
|
129 |
-
<tr>
|
130 |
-
<td>GPQA (0-shot)</td>
|
131 |
-
<td>2.35</td>
|
132 |
-
<td>5.48</td>
|
133 |
-
<td><b>8.05</b></td>
|
134 |
-
</tr>
|
135 |
-
<tr>
|
136 |
-
<td>MUSR (0-shot)</td>
|
137 |
-
<td>8.41</td>
|
138 |
-
<td>8.45</td>
|
139 |
-
<td><b>21.17</b></td>
|
140 |
-
</tr>
|
141 |
-
<tr>
|
142 |
-
<td>MMLU-PRO (5-shot)</td>
|
143 |
-
<td>30.68</td>
|
144 |
-
<td><b>36.52</b></td>
|
145 |
-
<td>34.30</td>
|
146 |
-
</tr>
|
147 |
-
</tbody>
|
148 |
-
</table>
|
149 |
-
|
150 |
-
Also, we report in the following table our internal pipeline benchmarks.
|
151 |
-
- We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness).
|
152 |
-
- We report **raw scores** obtained by applying chat template and fewshot_as_multiturn.
|
153 |
-
- We use same batch-size across all models.
|
154 |
|
155 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
156 |
<colgroup>
|
@@ -158,6 +89,8 @@ Also, we report in the following table our internal pipeline benchmarks.
|
|
158 |
<col style="width: 10%;">
|
159 |
<col style="width: 7%;">
|
160 |
<col style="width: 7%;">
|
|
|
|
|
161 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
162 |
</colgroup>
|
163 |
<thead>
|
@@ -165,7 +98,9 @@ Also, we report in the following table our internal pipeline benchmarks.
|
|
165 |
<th>Category</th>
|
166 |
<th>Benchmark</th>
|
167 |
<th>Llama-3.1-8B-Instruct</th>
|
|
|
168 |
<th>Qwen2.5-7B-Instruct</th>
|
|
|
169 |
<th>Falcon3-7B-Instruct</th>
|
170 |
</tr>
|
171 |
</thead>
|
@@ -173,128 +108,116 @@ Also, we report in the following table our internal pipeline benchmarks.
|
|
173 |
<tr>
|
174 |
<td rowspan="3">General</td>
|
175 |
<td>MMLU (5-shot)</td>
|
176 |
-
<td
|
177 |
-
<td
|
178 |
-
<td
|
|
|
|
|
179 |
</tr>
|
180 |
<tr>
|
181 |
<td>MMLU-PRO (5-shot)</td>
|
182 |
-
<td
|
183 |
-
<td
|
184 |
-
<td
|
|
|
|
|
185 |
</tr>
|
186 |
<tr>
|
187 |
<td>IFEval</td>
|
188 |
-
<td
|
189 |
-
<td
|
190 |
-
<td
|
|
|
|
|
191 |
</tr>
|
192 |
<tr>
|
193 |
-
<td rowspan="
|
194 |
<td>GSM8K (5-shot)</td>
|
195 |
-
<td
|
196 |
-
<td
|
197 |
-
<td
|
198 |
-
|
199 |
-
|
200 |
-
<td>GSM8K (8-shot, COT)</td>
|
201 |
-
<td><b>85.4</b></td>
|
202 |
-
<td>76.6</td>
|
203 |
-
<td>79.7</td>
|
204 |
</tr>
|
205 |
<tr>
|
206 |
-
<td>MATH
|
207 |
-
<td
|
|
|
|
|
|
|
208 |
<td>-</td>
|
209 |
-
<td><b>29.4</b></td>
|
210 |
</tr>
|
211 |
<tr>
|
212 |
-
<td rowspan="
|
213 |
<td>Arc Challenge (25-shot)</td>
|
214 |
-
<td
|
215 |
-
<td
|
216 |
-
<td
|
|
|
|
|
217 |
</tr>
|
218 |
<tr>
|
219 |
<td>GPQA (0-shot)</td>
|
220 |
-
<td
|
221 |
-
<td
|
222 |
-
<td
|
223 |
-
|
224 |
-
|
225 |
-
<td>GPQA (0-shot, COT)</td>
|
226 |
-
<td>9.6</td>
|
227 |
-
<td>13.8</td>
|
228 |
-
<td><b>22.3</b></td>
|
229 |
</tr>
|
230 |
<tr>
|
231 |
<td>MUSR (0-shot)</td>
|
232 |
-
<td
|
233 |
-
<td
|
234 |
-
<td
|
|
|
|
|
235 |
</tr>
|
236 |
<tr>
|
237 |
<td>BBH (3-shot)</td>
|
238 |
-
<td
|
239 |
-
<td
|
240 |
-
<td
|
|
|
|
|
241 |
</tr>
|
242 |
<tr>
|
243 |
<td rowspan="4">CommonSense Understanding</td>
|
244 |
<td>PIQA (0-shot)</td>
|
245 |
-
<td
|
246 |
-
<td
|
247 |
-
<td
|
|
|
|
|
248 |
</tr>
|
249 |
<tr>
|
250 |
<td>SciQ (0-shot)</td>
|
251 |
-
<td
|
252 |
-
<td
|
253 |
-
<td
|
|
|
|
|
254 |
</tr>
|
255 |
<tr>
|
256 |
<td>Winogrande (0-shot)</td>
|
257 |
<td>-</td>
|
258 |
<td>-</td>
|
259 |
-
<td
|
|
|
|
|
260 |
</tr>
|
261 |
<tr>
|
262 |
<td>OpenbookQA (0-shot)</td>
|
263 |
-
<td
|
264 |
-
<td
|
265 |
-
<td
|
266 |
-
|
267 |
-
|
268 |
-
<td rowspan="2">Instructions following</td>
|
269 |
-
<td>MT-Bench (avg)</td>
|
270 |
-
<td>7.9</td>
|
271 |
-
<td><b>8.5</b></td>
|
272 |
-
<td>8.4</td>
|
273 |
-
</tr>
|
274 |
-
<tr>
|
275 |
-
<td>Alpaca (WC)</td>
|
276 |
-
<td>26.6</td>
|
277 |
-
<td><b>31.5</b></td>
|
278 |
-
<td>26.1</td>
|
279 |
-
</tr>
|
280 |
-
<tr>
|
281 |
-
<td>Tool use</td>
|
282 |
-
<td>BFCL AST (avg)</td>
|
283 |
-
<td>90.6</td>
|
284 |
-
<td><b>91.4</b></td>
|
285 |
-
<td>89.5</td>
|
286 |
</tr>
|
287 |
</tbody>
|
288 |
</table>
|
289 |
|
290 |
-
## Useful links
|
291 |
-
- View our [release blogpost](https://huggingface.co/blog/falcon3).
|
292 |
-
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.
|
293 |
-
|
294 |
-
## Technical Report
|
295 |
-
Coming soon....
|
296 |
|
297 |
-
|
298 |
If Falcon3 family were helpful to your work, feel free to give us a cite.
|
299 |
|
300 |
```
|
|
|
6 |
- pt
|
7 |
tags:
|
8 |
- falcon3
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
|
|
|
|
|
|
|
|
11 |
# Falcon3-7B-Instruct
|
12 |
|
13 |
**Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B.
|
14 |
|
15 |
+
This repository contains the **Falcon3-7B-Instruct**. It achieves state of art results (at release's time) on reasoning, language understanding, instruction following, code and mathematics tasks.
|
16 |
Falcon3-7B-Instruct supports 4 languages (english, french, spanish, portuguese) and a context length up to 32K.
|
17 |
|
18 |
## Model Details
|
19 |
- Architecture
|
20 |
- Transformer based causal decoder only architecture
|
21 |
- 28 decoder blocks
|
22 |
+
- Grouped query attention (GQA) for faster inference: 12 query heads and 4 KV heads
|
23 |
- Wider head dimension: 256
|
24 |
- High RoPE value to support long context understanding: 1000042
|
25 |
+
- 32k context length
|
26 |
+
- 131k vocab size
|
27 |
+
- Pretrained on 14 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 2048 H100 GPU chips
|
|
|
28 |
- Postrained on 1.2 million samples of STEM, conversations, code, safety and function call data
|
29 |
- Supports EN, FR, ES, PT
|
30 |
- Developed by [Technology Innovation Institute](https://www.tii.ae)
|
|
|
48 |
model = AutoModelForCausalLM.from_pretrained(
|
49 |
model_name,
|
50 |
torch_dtype="auto",
|
51 |
+
device_map="auto"
|
52 |
)
|
53 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
|
|
|
80 |
|
81 |
<br>
|
82 |
|
83 |
+
# Benchmarks
|
84 |
+
We report in the following table our internal pipeline benchmarks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
<table border="1" style="width: 100%; text-align: center; border-collapse: collapse;">
|
87 |
<colgroup>
|
|
|
89 |
<col style="width: 10%;">
|
90 |
<col style="width: 7%;">
|
91 |
<col style="width: 7%;">
|
92 |
+
<col style="width: 7%;">
|
93 |
+
<col style="width: 7%;">
|
94 |
<col style="background-color: rgba(80, 15, 213, 0.5); width: 7%;">
|
95 |
</colgroup>
|
96 |
<thead>
|
|
|
98 |
<th>Category</th>
|
99 |
<th>Benchmark</th>
|
100 |
<th>Llama-3.1-8B-Instruct</th>
|
101 |
+
<th>Qwen2-7B-Instruct</th>
|
102 |
<th>Qwen2.5-7B-Instruct</th>
|
103 |
+
<th>gemma-2-9b-it</th>
|
104 |
<th>Falcon3-7B-Instruct</th>
|
105 |
</tr>
|
106 |
</thead>
|
|
|
108 |
<tr>
|
109 |
<td rowspan="3">General</td>
|
110 |
<td>MMLU (5-shot)</td>
|
111 |
+
<td>-</td>
|
112 |
+
<td>-</td>
|
113 |
+
<td>-</td>
|
114 |
+
<td>-</td>
|
115 |
+
<td>-</td>
|
116 |
</tr>
|
117 |
<tr>
|
118 |
<td>MMLU-PRO (5-shot)</td>
|
119 |
+
<td>-</td>
|
120 |
+
<td>-</td>
|
121 |
+
<td>-</td>
|
122 |
+
<td>-</td>
|
123 |
+
<td>-</td>
|
124 |
</tr>
|
125 |
<tr>
|
126 |
<td>IFEval</td>
|
127 |
+
<td>-</td>
|
128 |
+
<td>-</td>
|
129 |
+
<td>-</td>
|
130 |
+
<td>-</td>
|
131 |
+
<td>-</td>
|
132 |
</tr>
|
133 |
<tr>
|
134 |
+
<td rowspan="2">Math</td>
|
135 |
<td>GSM8K (5-shot)</td>
|
136 |
+
<td>-</td>
|
137 |
+
<td>-</td>
|
138 |
+
<td>-</td>
|
139 |
+
<td>-</td>
|
140 |
+
<td>-</td>
|
|
|
|
|
|
|
|
|
141 |
</tr>
|
142 |
<tr>
|
143 |
+
<td>MATH(4-shot)</td>
|
144 |
+
<td>-</td>
|
145 |
+
<td>-</td>
|
146 |
+
<td>-</td>
|
147 |
+
<td>-</td>
|
148 |
<td>-</td>
|
|
|
149 |
</tr>
|
150 |
<tr>
|
151 |
+
<td rowspan="4">Reasoning</td>
|
152 |
<td>Arc Challenge (25-shot)</td>
|
153 |
+
<td>-</td>
|
154 |
+
<td>-</td>
|
155 |
+
<td>-</td>
|
156 |
+
<td>-</td>
|
157 |
+
<td>-</td>
|
158 |
</tr>
|
159 |
<tr>
|
160 |
<td>GPQA (0-shot)</td>
|
161 |
+
<td>-</td>
|
162 |
+
<td>-</td>
|
163 |
+
<td>-</td>
|
164 |
+
<td>-</td>
|
165 |
+
<td>-</td>
|
|
|
|
|
|
|
|
|
166 |
</tr>
|
167 |
<tr>
|
168 |
<td>MUSR (0-shot)</td>
|
169 |
+
<td>-</td>
|
170 |
+
<td>-</td>
|
171 |
+
<td>-</td>
|
172 |
+
<td>-</td>
|
173 |
+
<td>-</td>
|
174 |
</tr>
|
175 |
<tr>
|
176 |
<td>BBH (3-shot)</td>
|
177 |
+
<td>-</td>
|
178 |
+
<td>-</td>
|
179 |
+
<td>-</td>
|
180 |
+
<td>-</td>
|
181 |
+
<td>-</td>
|
182 |
</tr>
|
183 |
<tr>
|
184 |
<td rowspan="4">CommonSense Understanding</td>
|
185 |
<td>PIQA (0-shot)</td>
|
186 |
+
<td>-</td>
|
187 |
+
<td>-</td>
|
188 |
+
<td>-</td>
|
189 |
+
<td>-</td>
|
190 |
+
<td>-</td>
|
191 |
</tr>
|
192 |
<tr>
|
193 |
<td>SciQ (0-shot)</td>
|
194 |
+
<td>-</td>
|
195 |
+
<td>-</td>
|
196 |
+
<td>-</td>
|
197 |
+
<td>-</td>
|
198 |
+
<td>-</td>
|
199 |
</tr>
|
200 |
<tr>
|
201 |
<td>Winogrande (0-shot)</td>
|
202 |
<td>-</td>
|
203 |
<td>-</td>
|
204 |
+
<td>-</td>
|
205 |
+
<td>-</td>
|
206 |
+
<td>-</td>
|
207 |
</tr>
|
208 |
<tr>
|
209 |
<td>OpenbookQA (0-shot)</td>
|
210 |
+
<td>-</td>
|
211 |
+
<td>-</td>
|
212 |
+
<td>-</td>
|
213 |
+
<td>-</td>
|
214 |
+
<td>-</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
</tr>
|
216 |
</tbody>
|
217 |
</table>
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
+
# Citation
|
221 |
If Falcon3 family were helpful to your work, feel free to give us a cite.
|
222 |
|
223 |
```
|
config.json
CHANGED
@@ -9,6 +9,7 @@
|
|
9 |
"head_dim": 256,
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 3072,
|
|
|
12 |
"intermediate_size": 23040,
|
13 |
"max_position_embeddings": 32768,
|
14 |
"mlp_bias": false,
|
|
|
9 |
"head_dim": 256,
|
10 |
"hidden_act": "silu",
|
11 |
"hidden_size": 3072,
|
12 |
+
"initializer_range": 0.02,
|
13 |
"intermediate_size": 23040,
|
14 |
"max_position_embeddings": 32768,
|
15 |
"mlp_bias": false,
|
special_tokens_map.json
CHANGED
@@ -32,7 +32,7 @@
|
|
32 |
"single_word": false
|
33 |
},
|
34 |
"pad_token": {
|
35 |
-
"content": "<|
|
36 |
"lstrip": false,
|
37 |
"normalized": false,
|
38 |
"rstrip": false,
|
|
|
32 |
"single_word": false
|
33 |
},
|
34 |
"pad_token": {
|
35 |
+
"content": "<|endoftext|>",
|
36 |
"lstrip": false,
|
37 |
"normalized": false,
|
38 |
"rstrip": false,
|
tokenizer.json
CHANGED
@@ -18212,7 +18212,7 @@
|
|
18212 |
},
|
18213 |
{
|
18214 |
"id": 2023,
|
18215 |
-
"content": "
|
18216 |
"single_word": false,
|
18217 |
"lstrip": false,
|
18218 |
"rstrip": false,
|
@@ -20280,7 +20280,7 @@
|
|
20280 |
">>UNUSED_1894<<": 2020,
|
20281 |
">>UNUSED_1895<<": 2021,
|
20282 |
">>UNUSED_1896<<": 2022,
|
20283 |
-
"
|
20284 |
"!": 2024,
|
20285 |
"\"": 2025,
|
20286 |
"#": 2026,
|
|
|
18212 |
},
|
18213 |
{
|
18214 |
"id": 2023,
|
18215 |
+
"content": ">>UNUSED_1897<<",
|
18216 |
"single_word": false,
|
18217 |
"lstrip": false,
|
18218 |
"rstrip": false,
|
|
|
20280 |
">>UNUSED_1894<<": 2020,
|
20281 |
">>UNUSED_1895<<": 2021,
|
20282 |
">>UNUSED_1896<<": 2022,
|
20283 |
+
">>UNUSED_1897<<": 2023,
|
20284 |
"!": 2024,
|
20285 |
"\"": 2025,
|
20286 |
"#": 2026,
|
tokenizer_config.json
CHANGED
@@ -16186,7 +16186,7 @@
|
|
16186 |
"special": true
|
16187 |
},
|
16188 |
"2023": {
|
16189 |
-
"content": "
|
16190 |
"lstrip": false,
|
16191 |
"normalized": false,
|
16192 |
"rstrip": false,
|
@@ -16219,7 +16219,7 @@
|
|
16219 |
">>PASSWORD<<",
|
16220 |
">>KEY<<"
|
16221 |
],
|
16222 |
-
"chat_template": "{
|
16223 |
"clean_up_tokenization_spaces": true,
|
16224 |
"eos_token": "<|endoftext|>",
|
16225 |
"extra_special_tokens": {},
|
@@ -16227,7 +16227,7 @@
|
|
16227 |
"input_ids",
|
16228 |
"attention_mask"
|
16229 |
],
|
16230 |
-
"model_max_length":
|
16231 |
-
"pad_token": "<|
|
16232 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
16233 |
}
|
|
|
16186 |
"special": true
|
16187 |
},
|
16188 |
"2023": {
|
16189 |
+
"content": ">>UNUSED_1897<<",
|
16190 |
"lstrip": false,
|
16191 |
"normalized": false,
|
16192 |
"rstrip": false,
|
|
|
16219 |
">>PASSWORD<<",
|
16220 |
">>KEY<<"
|
16221 |
],
|
16222 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<|system|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' %}{% if not loop.last %}{{ '<|assistant|>\n' + message['content'] + eos_token + '\n' }}{% else %}{{ '<|assistant|>\n' + message['content'] + eos_token }}{% endif %}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}{% endfor %}",
|
16223 |
"clean_up_tokenization_spaces": true,
|
16224 |
"eos_token": "<|endoftext|>",
|
16225 |
"extra_special_tokens": {},
|
|
|
16227 |
"input_ids",
|
16228 |
"attention_mask"
|
16229 |
],
|
16230 |
+
"model_max_length": 8192,
|
16231 |
+
"pad_token": "<|endoftext|>",
|
16232 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
16233 |
}
|