|
--- |
|
language: |
|
- multilingual |
|
- pt |
|
base_model: /content/opus-mt-en-mul |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tiagoblima/translation-pt-indigenouns |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: tst-gun-gub-pt |
|
results: |
|
- task: |
|
name: Translation |
|
type: translation |
|
dataset: |
|
name: tiagoblima/translation-pt-indigenouns |
|
type: tiagoblima/translation-pt-indigenouns |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 8.5368 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tst-gun-gub-pt |
|
|
|
This model is a fine-tuned version of [/content/opus-mt-en-mul](https://huggingface.co.//content/opus-mt-en-mul) on the tiagoblima/translation-pt-indigenouns dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8158 |
|
- Bleu: 8.5368 |
|
- Gen Len: 59.24 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| |
|
| 2.4421 | 0.29 | 4000 | 2.5285 | 3.3785 | 68.48 | |
|
| 2.1667 | 0.59 | 8000 | 2.3018 | 4.5883 | 58.6 | |
|
| 2.0255 | 0.88 | 12000 | 2.1290 | 5.1052 | 67.3 | |
|
| 1.8995 | 1.18 | 16000 | 2.0535 | 7.8429 | 55.48 | |
|
| 1.8322 | 1.47 | 20000 | 1.9960 | 7.2663 | 58.24 | |
|
| 1.7868 | 1.77 | 24000 | 1.9224 | 7.0981 | 66.34 | |
|
| 1.7012 | 2.06 | 28000 | 1.8869 | 7.5657 | 60.3 | |
|
| 1.6773 | 2.36 | 32000 | 1.8613 | 7.9888 | 61.18 | |
|
| 1.6631 | 2.65 | 36000 | 1.8354 | 8.0862 | 60.5 | |
|
| 1.6379 | 2.94 | 40000 | 1.8158 | 8.4077 | 60.18 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|