language:

  • en pipeline_tag: text-generation tags:

Qwen2-1.5B-Sign

Introduction

Qwen2-Sign is a text to sige model base on Qwen2.

Finetune Details

Parameter Value
learning_rate 5e-05
train_batch_size 4
eval_batch_size 4
gradient_accumulation_steps 8
total_train_batch_size 32
lr_scheduler_type cosine
lr_scheduler_warmup_steps 100
num_epochs 4

Quickstart

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda"  # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "thundax/Qwen2-1.5B-Sign",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("thundax/Qwen2-1.5B-Sign")

text = "你好,世界!"
text = f'Translate sentence into labels\n{text}\n'
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Citation

If you find our work helpful, feel free to give us a cite.

@software{qwen2-sign,
  author = {thundax},
  title = {qwen2-sign: A Tool for Text to Sign},
  year = {2024},
  url = {https://github.com/thundax-lyp},
}
Downloads last month
15
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using thundax/Qwen2-1.5B-Sign 1