sparse_llama_7b_hf2_refined_web_90p_2024-03-28
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3153
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.8983 | 0.01 | 25 | 3.8553 |
3.6791 | 0.02 | 50 | 3.6288 |
3.3856 | 0.02 | 75 | 3.2986 |
3.0847 | 0.03 | 100 | 3.0762 |
3.0266 | 0.04 | 125 | 2.9288 |
2.7862 | 0.05 | 150 | 2.8476 |
2.7069 | 0.06 | 175 | 2.7920 |
2.8305 | 0.06 | 200 | 2.7516 |
2.7705 | 0.07 | 225 | 2.7169 |
2.7147 | 0.08 | 250 | 2.6919 |
2.6389 | 0.09 | 275 | 2.6717 |
2.6475 | 0.1 | 300 | 2.6520 |
2.6529 | 0.1 | 325 | 2.6390 |
2.6184 | 0.11 | 350 | 2.6265 |
2.5622 | 0.12 | 375 | 2.6185 |
2.633 | 0.13 | 400 | 2.6069 |
2.599 | 0.14 | 425 | 2.5981 |
2.546 | 0.14 | 450 | 2.5887 |
2.6289 | 0.15 | 475 | 2.5820 |
2.6286 | 0.16 | 500 | 2.5784 |
2.5407 | 0.17 | 525 | 2.5679 |
2.5188 | 0.18 | 550 | 2.5650 |
2.6405 | 0.18 | 575 | 2.5611 |
2.5413 | 0.19 | 600 | 2.5600 |
2.5519 | 0.2 | 625 | 2.5534 |
2.5961 | 0.21 | 650 | 2.5516 |
2.5154 | 0.22 | 675 | 2.5449 |
2.5137 | 0.22 | 700 | 2.5434 |
2.533 | 0.23 | 725 | 2.5398 |
2.4439 | 0.24 | 750 | 2.5345 |
2.5153 | 0.25 | 775 | 2.5340 |
2.5624 | 0.26 | 800 | 2.5304 |
2.5224 | 0.26 | 825 | 2.5266 |
2.4942 | 0.27 | 850 | 2.5242 |
2.4953 | 0.28 | 875 | 2.5205 |
2.4524 | 0.29 | 900 | 2.5203 |
2.6528 | 0.3 | 925 | 2.5170 |
2.5991 | 0.3 | 950 | 2.5139 |
2.5381 | 0.31 | 975 | 2.5150 |
2.4272 | 0.32 | 1000 | 2.5122 |
2.5282 | 0.33 | 1025 | 2.5100 |
2.4874 | 0.34 | 1050 | 2.5098 |
2.4774 | 0.34 | 1075 | 2.5033 |
2.4763 | 0.35 | 1100 | 2.5026 |
2.4181 | 0.36 | 1125 | 2.5022 |
2.5109 | 0.37 | 1150 | 2.5002 |
2.4735 | 0.38 | 1175 | 2.4980 |
2.4494 | 0.38 | 1200 | 2.4980 |
2.409 | 0.39 | 1225 | 2.4968 |
2.5744 | 0.4 | 1250 | 2.4966 |
2.3832 | 0.41 | 1275 | 2.4960 |
2.4655 | 0.42 | 1300 | 2.4943 |
2.5935 | 0.42 | 1325 | 2.4896 |
2.466 | 0.43 | 1350 | 2.4881 |
2.4694 | 0.44 | 1375 | 2.4909 |
2.5194 | 0.45 | 1400 | 2.4889 |
2.5031 | 0.46 | 1425 | 2.4888 |
2.4452 | 0.46 | 1450 | 2.4870 |
2.5083 | 0.47 | 1475 | 2.4846 |
2.4407 | 0.48 | 1500 | 2.4840 |
2.4768 | 0.49 | 1525 | 2.4829 |
2.5227 | 0.5 | 1550 | 2.4851 |
2.473 | 0.5 | 1575 | 2.4832 |
2.5159 | 0.51 | 1600 | 2.4819 |
2.4545 | 0.52 | 1625 | 2.4798 |
2.3983 | 0.53 | 1650 | 2.4816 |
2.4108 | 0.54 | 1675 | 2.4782 |
2.4274 | 0.54 | 1700 | 2.4780 |
2.3832 | 0.55 | 1725 | 2.4767 |
2.5213 | 0.56 | 1750 | 2.4746 |
2.4138 | 0.57 | 1775 | 2.4755 |
2.5278 | 0.58 | 1800 | 2.4735 |
2.5962 | 0.58 | 1825 | 2.4754 |
2.4684 | 0.59 | 1850 | 2.4749 |
2.3673 | 0.6 | 1875 | 2.4741 |
2.4682 | 0.61 | 1900 | 2.4716 |
2.4858 | 0.62 | 1925 | 2.4690 |
2.4868 | 0.62 | 1950 | 2.4729 |
2.4707 | 0.63 | 1975 | 2.4708 |
2.5625 | 0.64 | 2000 | 2.4714 |
2.4543 | 0.65 | 2025 | 2.4728 |
2.4311 | 0.66 | 2050 | 2.4678 |
2.4567 | 0.66 | 2075 | 2.4692 |
2.4956 | 0.67 | 2100 | 2.4688 |
2.4889 | 0.68 | 2125 | 2.4698 |
2.5136 | 0.69 | 2150 | 2.4690 |
2.4911 | 0.7 | 2175 | 2.4663 |
2.5116 | 0.7 | 2200 | 2.4673 |
2.4444 | 0.71 | 2225 | 2.4681 |
2.4031 | 0.72 | 2250 | 2.4681 |
2.4174 | 0.73 | 2275 | 2.4639 |
2.4382 | 0.74 | 2300 | 2.4643 |
2.512 | 0.74 | 2325 | 2.4672 |
2.4861 | 0.75 | 2350 | 2.4641 |
2.4557 | 0.76 | 2375 | 2.4617 |
2.4462 | 0.77 | 2400 | 2.4628 |
2.4978 | 0.78 | 2425 | 2.4610 |
2.3829 | 0.78 | 2450 | 2.4614 |
2.5326 | 0.79 | 2475 | 2.4590 |
2.3938 | 0.8 | 2500 | 2.4605 |
2.42 | 0.81 | 2525 | 2.4614 |
2.4462 | 0.82 | 2550 | 2.4625 |
2.3891 | 0.82 | 2575 | 2.4626 |
2.5055 | 0.83 | 2600 | 2.4613 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.2
- Downloads last month
- 11
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for thrunlab/sparse_llama_7b_hf2_refined_web_90p_2024-03-28
Base model
meta-llama/Llama-2-7b-hf