|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-large-cnn-ing-extraction-e4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-cnn-ing-extraction-e4 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6226 |
|
- Rouge1: 10.8186 |
|
- Rouge2: 4.3032 |
|
- Rougel: 10.7802 |
|
- Rougelsum: 10.7952 |
|
- Gen Len: 57.5739 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 0.6235 | 1.0 | 762 | 3.1458 | 14.9141 | 5.5712 | 14.7529 | 14.8292 | 57.6903 | |
|
| 0.2435 | 2.0 | 1524 | 2.2255 | 6.4408 | 2.4546 | 6.4219 | 6.4393 | 57.2955 | |
|
| 0.1467 | 3.0 | 2286 | 2.9673 | 9.9243 | 3.9008 | 9.932 | 9.9268 | 57.6506 | |
|
| 0.0627 | 4.0 | 3048 | 2.6226 | 10.8186 | 4.3032 | 10.7802 | 10.7952 | 57.5739 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|