Edit model card

final

This model is a fine-tuned version of roberta-large on the GLUE SCHONE_ACH dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0846
  • Roc Auc: 0.9888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Roc Auc
0.185 0.9985 332 0.1574 0.9583
0.1607 2.0 665 0.1283 0.9730
0.1357 2.9985 997 0.1071 0.9818
0.1214 4.0 1330 0.0978 0.9870
0.1011 4.9925 1660 0.0846 0.9888

Framework versions

  • Transformers 4.44.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
355M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for theharmonylab/implicit-motives-achievement-roberta-large

Finetuned
(282)
this model