File size: 2,319 Bytes
2d78361 6863dd3 2d78361 6863dd3 2d78361 1661676 2d78361 6863dd3 2d78361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8239812959251837
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned-eurosat
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co./microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9095
- Accuracy: 0.8240
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.78 | 0.96 | 17 | 1.7432 | 0.4321 |
| 1.7105 | 1.96 | 34 | 1.6596 | 0.6307 |
| 1.6045 | 2.96 | 51 | 1.5369 | 0.6758 |
| 1.6526 | 3.96 | 68 | 1.4111 | 0.7139 |
| 1.4018 | 4.96 | 85 | 1.2686 | 0.7602 |
| 1.2812 | 5.96 | 102 | 1.1433 | 0.7714 |
| 1.3282 | 6.96 | 119 | 1.0643 | 0.7910 |
| 1.1246 | 7.96 | 136 | 0.9794 | 0.8133 |
| 1.0731 | 8.96 | 153 | 0.9279 | 0.8087 |
| 1.0531 | 9.96 | 170 | 0.9095 | 0.8240 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|