thaonguyen274 commited on
Commit
2d78361
·
1 Parent(s): ac81154

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: resnet-50-finetuned-eurosat
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.46823040380047504
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # resnet-50-finetuned-eurosat
31
+
32
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.6973
35
+ - Accuracy: 0.4682
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | No log | 0.89 | 6 | 1.7731 | 0.2550 |
70
+ | 1.9105 | 1.89 | 12 | 1.7591 | 0.3409 |
71
+ | 1.9105 | 2.89 | 18 | 1.7453 | 0.3910 |
72
+ | 2.0207 | 3.89 | 24 | 1.7334 | 0.4394 |
73
+ | 1.8655 | 4.89 | 30 | 1.7232 | 0.4388 |
74
+ | 1.8655 | 5.89 | 36 | 1.7149 | 0.4569 |
75
+ | 1.9825 | 6.89 | 42 | 1.7101 | 0.4840 |
76
+ | 1.9825 | 7.89 | 48 | 1.7018 | 0.4736 |
77
+ | 1.9672 | 8.89 | 54 | 1.6976 | 0.4828 |
78
+ | 1.8329 | 9.89 | 60 | 1.6973 | 0.4682 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.24.0
84
+ - Pytorch 1.12.1+cu113
85
+ - Datasets 2.6.1
86
+ - Tokenizers 0.13.1