File size: 2,319 Bytes
2d78361 1661676 2d78361 1661676 2d78361 1661676 2d78361 1661676 2d78361 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5026722090261283
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-50-finetuned-eurosat
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co./microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5983
- Accuracy: 0.5027
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.89 | 6 | 1.7745 | 0.2838 |
| 1.9066 | 1.89 | 12 | 1.7447 | 0.3895 |
| 1.9066 | 2.89 | 18 | 1.7216 | 0.4154 |
| 1.9875 | 3.89 | 24 | 1.6914 | 0.4311 |
| 1.8094 | 4.89 | 30 | 1.6659 | 0.4629 |
| 1.8094 | 5.89 | 36 | 1.6485 | 0.4852 |
| 1.8906 | 6.89 | 42 | 1.6278 | 0.4869 |
| 1.8906 | 7.89 | 48 | 1.6098 | 0.5021 |
| 1.8516 | 8.89 | 54 | 1.6131 | 0.5175 |
| 1.718 | 9.89 | 60 | 1.5983 | 0.5027 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1
|