OpenELM
This model is a fine-tuned version of apple/OpenELM-1_1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8217
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.4857 | 0.0041 | 10 | 1.3911 |
1.3665 | 0.0082 | 20 | 1.2476 |
1.2776 | 0.0123 | 30 | 1.1732 |
1.1933 | 0.0164 | 40 | 1.1347 |
1.1747 | 0.0205 | 50 | 1.1082 |
1.1433 | 0.0246 | 60 | 1.0864 |
1.1225 | 0.0288 | 70 | 1.0698 |
1.0967 | 0.0329 | 80 | 1.0541 |
1.075 | 0.0370 | 90 | 1.0411 |
1.0551 | 0.0411 | 100 | 1.0316 |
1.0587 | 0.0452 | 110 | 1.0231 |
1.0432 | 0.0493 | 120 | 1.0160 |
1.0512 | 0.0534 | 130 | 1.0095 |
1.0527 | 0.0575 | 140 | 1.0042 |
1.032 | 0.0616 | 150 | 0.9989 |
1.0277 | 0.0657 | 160 | 0.9936 |
1.0316 | 0.0698 | 170 | 0.9890 |
1.0225 | 0.0739 | 180 | 0.9848 |
1.007 | 0.0780 | 190 | 0.9804 |
0.9918 | 0.0822 | 200 | 0.9769 |
1.0152 | 0.0863 | 210 | 0.9734 |
0.9872 | 0.0904 | 220 | 0.9703 |
0.9972 | 0.0945 | 230 | 0.9670 |
1.0098 | 0.0986 | 240 | 0.9639 |
0.9869 | 0.1027 | 250 | 0.9607 |
0.9829 | 0.1068 | 260 | 0.9581 |
0.9983 | 0.1109 | 270 | 0.9556 |
0.9973 | 0.1150 | 280 | 0.9527 |
0.9848 | 0.1191 | 290 | 0.9505 |
0.9734 | 0.1232 | 300 | 0.9478 |
0.9677 | 0.1273 | 310 | 0.9451 |
0.9638 | 0.1314 | 320 | 0.9434 |
0.9654 | 0.1356 | 330 | 0.9411 |
0.9653 | 0.1397 | 340 | 0.9389 |
0.976 | 0.1438 | 350 | 0.9370 |
0.9627 | 0.1479 | 360 | 0.9355 |
0.9533 | 0.1520 | 370 | 0.9331 |
0.9441 | 0.1561 | 380 | 0.9309 |
0.958 | 0.1602 | 390 | 0.9294 |
0.9467 | 0.1643 | 400 | 0.9273 |
0.9412 | 0.1684 | 410 | 0.9254 |
0.9632 | 0.1725 | 420 | 0.9237 |
0.9248 | 0.1766 | 430 | 0.9218 |
0.9384 | 0.1807 | 440 | 0.9204 |
0.9407 | 0.1848 | 450 | 0.9187 |
0.9439 | 0.1890 | 460 | 0.9170 |
0.9353 | 0.1931 | 470 | 0.9154 |
0.9346 | 0.1972 | 480 | 0.9139 |
0.9373 | 0.2013 | 490 | 0.9121 |
0.936 | 0.2054 | 500 | 0.9107 |
0.9375 | 0.2095 | 510 | 0.9096 |
0.9456 | 0.2136 | 520 | 0.9076 |
0.9354 | 0.2177 | 530 | 0.9065 |
0.9173 | 0.2218 | 540 | 0.9052 |
0.921 | 0.2259 | 550 | 0.9042 |
0.9233 | 0.2300 | 560 | 0.9025 |
0.9338 | 0.2341 | 570 | 0.9012 |
0.918 | 0.2382 | 580 | 0.8996 |
0.9221 | 0.2424 | 590 | 0.8985 |
0.903 | 0.2465 | 600 | 0.8973 |
0.9094 | 0.2506 | 610 | 0.8965 |
0.9077 | 0.2547 | 620 | 0.8953 |
0.9076 | 0.2588 | 630 | 0.8944 |
0.9304 | 0.2629 | 640 | 0.8931 |
0.9118 | 0.2670 | 650 | 0.8917 |
0.9131 | 0.2711 | 660 | 0.8910 |
0.9213 | 0.2752 | 670 | 0.8901 |
0.901 | 0.2793 | 680 | 0.8891 |
0.9089 | 0.2834 | 690 | 0.8882 |
0.9152 | 0.2875 | 700 | 0.8871 |
0.9138 | 0.2916 | 710 | 0.8863 |
0.8988 | 0.2958 | 720 | 0.8849 |
0.8945 | 0.2999 | 730 | 0.8843 |
0.9104 | 0.3040 | 740 | 0.8836 |
0.919 | 0.3081 | 750 | 0.8826 |
0.9049 | 0.3122 | 760 | 0.8815 |
0.8834 | 0.3163 | 770 | 0.8806 |
0.9053 | 0.3204 | 780 | 0.8795 |
0.9039 | 0.3245 | 790 | 0.8789 |
0.9018 | 0.3286 | 800 | 0.8781 |
0.8847 | 0.3327 | 810 | 0.8775 |
0.8884 | 0.3368 | 820 | 0.8760 |
0.8867 | 0.3409 | 830 | 0.8756 |
0.8782 | 0.3450 | 840 | 0.8747 |
0.8765 | 0.3492 | 850 | 0.8737 |
0.8862 | 0.3533 | 860 | 0.8733 |
0.889 | 0.3574 | 870 | 0.8722 |
0.8997 | 0.3615 | 880 | 0.8716 |
0.8706 | 0.3656 | 890 | 0.8708 |
0.8982 | 0.3697 | 900 | 0.8701 |
0.8792 | 0.3738 | 910 | 0.8693 |
0.8869 | 0.3779 | 920 | 0.8686 |
0.8704 | 0.3820 | 930 | 0.8678 |
0.8902 | 0.3861 | 940 | 0.8676 |
0.8827 | 0.3902 | 950 | 0.8667 |
0.8832 | 0.3943 | 960 | 0.8662 |
0.883 | 0.3984 | 970 | 0.8650 |
0.8803 | 0.4026 | 980 | 0.8642 |
0.8605 | 0.4067 | 990 | 0.8634 |
0.8838 | 0.4108 | 1000 | 0.8627 |
0.8878 | 0.4149 | 1010 | 0.8623 |
0.8835 | 0.4190 | 1020 | 0.8614 |
0.8597 | 0.4231 | 1030 | 0.8609 |
0.8648 | 0.4272 | 1040 | 0.8603 |
0.8847 | 0.4313 | 1050 | 0.8598 |
0.8921 | 0.4354 | 1060 | 0.8592 |
0.8718 | 0.4395 | 1070 | 0.8590 |
0.8829 | 0.4436 | 1080 | 0.8583 |
0.8715 | 0.4477 | 1090 | 0.8576 |
0.8736 | 0.4518 | 1100 | 0.8570 |
0.8611 | 0.4560 | 1110 | 0.8563 |
0.872 | 0.4601 | 1120 | 0.8558 |
0.8756 | 0.4642 | 1130 | 0.8554 |
0.8793 | 0.4683 | 1140 | 0.8548 |
0.8872 | 0.4724 | 1150 | 0.8545 |
0.8719 | 0.4765 | 1160 | 0.8539 |
0.8699 | 0.4806 | 1170 | 0.8536 |
0.8779 | 0.4847 | 1180 | 0.8527 |
0.876 | 0.4888 | 1190 | 0.8526 |
0.8777 | 0.4929 | 1200 | 0.8519 |
0.8552 | 0.4970 | 1210 | 0.8514 |
0.8717 | 0.5011 | 1220 | 0.8508 |
0.879 | 0.5053 | 1230 | 0.8502 |
0.8606 | 0.5094 | 1240 | 0.8499 |
0.865 | 0.5135 | 1250 | 0.8492 |
0.8723 | 0.5176 | 1260 | 0.8489 |
0.8685 | 0.5217 | 1270 | 0.8485 |
0.8521 | 0.5258 | 1280 | 0.8480 |
0.8666 | 0.5299 | 1290 | 0.8475 |
0.8621 | 0.5340 | 1300 | 0.8473 |
0.8509 | 0.5381 | 1310 | 0.8469 |
0.8604 | 0.5422 | 1320 | 0.8462 |
0.8692 | 0.5463 | 1330 | 0.8459 |
0.8684 | 0.5504 | 1340 | 0.8454 |
0.8701 | 0.5545 | 1350 | 0.8451 |
0.856 | 0.5587 | 1360 | 0.8445 |
0.8578 | 0.5628 | 1370 | 0.8439 |
0.862 | 0.5669 | 1380 | 0.8435 |
0.8563 | 0.5710 | 1390 | 0.8431 |
0.8503 | 0.5751 | 1400 | 0.8428 |
0.857 | 0.5792 | 1410 | 0.8425 |
0.8468 | 0.5833 | 1420 | 0.8419 |
0.8555 | 0.5874 | 1430 | 0.8415 |
0.8398 | 0.5915 | 1440 | 0.8412 |
0.8649 | 0.5956 | 1450 | 0.8407 |
0.8495 | 0.5997 | 1460 | 0.8404 |
0.855 | 0.6038 | 1470 | 0.8401 |
0.8531 | 0.6079 | 1480 | 0.8397 |
0.8614 | 0.6121 | 1490 | 0.8391 |
0.8481 | 0.6162 | 1500 | 0.8389 |
0.861 | 0.6203 | 1510 | 0.8385 |
0.8426 | 0.6244 | 1520 | 0.8384 |
0.8494 | 0.6285 | 1530 | 0.8380 |
0.8475 | 0.6326 | 1540 | 0.8375 |
0.8563 | 0.6367 | 1550 | 0.8372 |
0.8372 | 0.6408 | 1560 | 0.8369 |
0.8567 | 0.6449 | 1570 | 0.8366 |
0.8555 | 0.6490 | 1580 | 0.8365 |
0.8435 | 0.6531 | 1590 | 0.8361 |
0.8533 | 0.6572 | 1600 | 0.8356 |
0.8431 | 0.6613 | 1610 | 0.8353 |
0.8577 | 0.6655 | 1620 | 0.8352 |
0.854 | 0.6696 | 1630 | 0.8347 |
0.8376 | 0.6737 | 1640 | 0.8347 |
0.8403 | 0.6778 | 1650 | 0.8343 |
0.8629 | 0.6819 | 1660 | 0.8340 |
0.841 | 0.6860 | 1670 | 0.8337 |
0.8339 | 0.6901 | 1680 | 0.8334 |
0.855 | 0.6942 | 1690 | 0.8331 |
0.8391 | 0.6983 | 1700 | 0.8327 |
0.8488 | 0.7024 | 1710 | 0.8324 |
0.8458 | 0.7065 | 1720 | 0.8322 |
0.8495 | 0.7106 | 1730 | 0.8319 |
0.8543 | 0.7147 | 1740 | 0.8317 |
0.8453 | 0.7189 | 1750 | 0.8317 |
0.8378 | 0.7230 | 1760 | 0.8313 |
0.8447 | 0.7271 | 1770 | 0.8309 |
0.8505 | 0.7312 | 1780 | 0.8306 |
0.8384 | 0.7353 | 1790 | 0.8303 |
0.824 | 0.7394 | 1800 | 0.8302 |
0.8574 | 0.7435 | 1810 | 0.8298 |
0.8365 | 0.7476 | 1820 | 0.8296 |
0.853 | 0.7517 | 1830 | 0.8294 |
0.8409 | 0.7558 | 1840 | 0.8292 |
0.8417 | 0.7599 | 1850 | 0.8290 |
0.8413 | 0.7640 | 1860 | 0.8288 |
0.8294 | 0.7681 | 1870 | 0.8286 |
0.8535 | 0.7723 | 1880 | 0.8283 |
0.8352 | 0.7764 | 1890 | 0.8281 |
0.8411 | 0.7805 | 1900 | 0.8281 |
0.8498 | 0.7846 | 1910 | 0.8279 |
0.8322 | 0.7887 | 1920 | 0.8276 |
0.8504 | 0.7928 | 1930 | 0.8273 |
0.8274 | 0.7969 | 1940 | 0.8272 |
0.8378 | 0.8010 | 1950 | 0.8269 |
0.8364 | 0.8051 | 1960 | 0.8268 |
0.8395 | 0.8092 | 1970 | 0.8267 |
0.8472 | 0.8133 | 1980 | 0.8264 |
0.8577 | 0.8174 | 1990 | 0.8262 |
0.8277 | 0.8215 | 2000 | 0.8259 |
0.8371 | 0.8257 | 2010 | 0.8258 |
0.8477 | 0.8298 | 2020 | 0.8256 |
0.8282 | 0.8339 | 2030 | 0.8256 |
0.8335 | 0.8380 | 2040 | 0.8255 |
0.8323 | 0.8421 | 2050 | 0.8253 |
0.8319 | 0.8462 | 2060 | 0.8251 |
0.8126 | 0.8503 | 2070 | 0.8250 |
0.8436 | 0.8544 | 2080 | 0.8249 |
0.8248 | 0.8585 | 2090 | 0.8248 |
0.8261 | 0.8626 | 2100 | 0.8245 |
0.8234 | 0.8667 | 2110 | 0.8244 |
0.8592 | 0.8708 | 2120 | 0.8243 |
0.8275 | 0.8749 | 2130 | 0.8242 |
0.8426 | 0.8791 | 2140 | 0.8240 |
0.8433 | 0.8832 | 2150 | 0.8240 |
0.8281 | 0.8873 | 2160 | 0.8239 |
0.8381 | 0.8914 | 2170 | 0.8237 |
0.8382 | 0.8955 | 2180 | 0.8235 |
0.8164 | 0.8996 | 2190 | 0.8234 |
0.8343 | 0.9037 | 2200 | 0.8233 |
0.8367 | 0.9078 | 2210 | 0.8231 |
0.837 | 0.9119 | 2220 | 0.8230 |
0.8245 | 0.9160 | 2230 | 0.8229 |
0.8489 | 0.9201 | 2240 | 0.8228 |
0.8391 | 0.9242 | 2250 | 0.8227 |
0.8341 | 0.9283 | 2260 | 0.8227 |
0.8442 | 0.9325 | 2270 | 0.8226 |
0.8302 | 0.9366 | 2280 | 0.8225 |
0.832 | 0.9407 | 2290 | 0.8224 |
0.833 | 0.9448 | 2300 | 0.8223 |
0.8313 | 0.9489 | 2310 | 0.8223 |
0.8444 | 0.9530 | 2320 | 0.8222 |
0.8405 | 0.9571 | 2330 | 0.8221 |
0.8433 | 0.9612 | 2340 | 0.8221 |
0.8348 | 0.9653 | 2350 | 0.8220 |
0.8355 | 0.9694 | 2360 | 0.8219 |
0.8361 | 0.9735 | 2370 | 0.8219 |
0.8254 | 0.9776 | 2380 | 0.8219 |
0.8371 | 0.9817 | 2390 | 0.8218 |
0.8304 | 0.9859 | 2400 | 0.8218 |
0.8169 | 0.9900 | 2410 | 0.8218 |
0.8219 | 0.9941 | 2420 | 0.8217 |
0.833 | 0.9982 | 2430 | 0.8217 |
Framework versions
- PEFT 0.10.0
- Transformers 4.41.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 122
Model tree for thaisonatk/OpenELM
Base model
apple/OpenELM-1_1B