Text Generation
Transformers
Safetensors
mistral
Named Entity Recognition
Relation Extraction
conversational
text-generation-inference
Inference Endpoints
davidreusch's picture
Update README.md
34e6447 verified
|
raw
history blame
6.3 kB
---
tags:
- Named Entity Recognition
- Relation Extraction
datasets:
- text2tech/ner_re_1000_texts_GPT3.5labeled_chat_dataset
- text2tech/ner_100abstracts_100full_texts_GPT4labeled_chat_dataset
---
# Model Card for mistral-7b-instruct-v0.2-NER-RE-qlora-1200docs
<!-- Provide a quick summary of what the model is/does. -->
Mistral fine-tuned on 1000 GPT3.5- and 200 GPT4-labeled documents to extract technical entities and relations between entities from texts.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
# load model and tokenizer
MODEL = "text2tech/mistral-7b-instruct-v0.2-NER-RE-qlora-1200docs"
model = AutoModelForCausalLM.from_pretrained(MODEL, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL, padding_side="left", pad_token_id=0)
# prepare example data
data = datasets.load_dataset("text2tech/ner_re_1000_texts_GPT3.5labeled_chat_dataset")
ex_user_prompt = [data['test']['NER_chats'][0][0]]
ex = tokenizer.apply_chat_template(ex_user_prompt, add_generation_prompt=True, return_dict=True, return_tensors='pt')
ex = {k: v.to(model.device) for k, v in ex.items()}
print(ex_user_prompt[0]['content'])
# generate response
response = model.generate(**ex, max_new_tokens=300, temperature=0.0)
# print decoded
input_len = ex['input_ids'].shape[1]
print(tokenizer.decode(response[0][input_len:], skip_special_tokens=True))
```
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]