terrencewee12's picture
Upload XLMRobertaForSequenceClassification
f6c2d33 verified
|
raw
history blame
2.37 kB
---
{}
---
---
language:
- ms
tags:
- sentiment-analysis
- text-classification
- multilingual
license: apache-2.0
datasets:
- tyqiangz/multilingual-sentiments
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-sentiment-multilingual-finetuned
results:
- task:
type: text-classification
name: Text Classification
dataset:
chinese: scfengv/TVL_Sentiment_Analysis
malay : tyqiangz/multilingual-sentiments", "malay"
english: "argilla/twitter-coronavirus"
metrics:
- type: accuracy
value: 0.7244
# xlm-roberta-base-sentiment-multilingual-finetuned
## Model description
This is a fine-tuned version of the [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co./cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) model, trained on the [tyqiangz/multilingual-sentiments](https://huggingface.co./datasets/tyqiangz/multilingual-sentiments) dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese.
## Intended uses & limitations
This model is intended for sentiment analysis tasks in Malay. It can classify text into three sentiment categories: positive, negative, and neutral.
## Training and evaluation data
The model was trained and evaluated on the [tyqiangz/multilingual-sentiments](https://huggingface.co./datasets/tyqiangz/multilingual-sentiments) dataset.
## Training procedure
The model was fine-tuned using the Hugging Face Transformers library.
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=2,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
evaluation_strategy="steps",
save_strategy="steps",
load_best_model_at_end=True,
)
## Evaluation results
est results: {'eval_loss': 0.6420313119888306, 'eval_accuracy': 0.7243781094527363, 'eval_f1': 0.712778066703921, 'eval_precision': 0.7391632387942287, 'eval_recall': 0.7243781094527363, 'eval_runtime': 4.681, 'eval_samples_per_second': 214.696, 'eval_steps_per_second': 3.418, 'epoch': 2.0}
## Environmental impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).