morriszms's picture
Upload folder using huggingface_hub
6cda12a verified
metadata
license: apache-2.0
library_name: transformers
base_model: macadeliccc/laser-dolphin-mixtral-4x7b-dpo
tags:
  - TensorBlock
  - GGUF
model-index:
  - name: laser-dolphin-mixtral-4x7b-dpo
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 64.93
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.81
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.77
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

macadeliccc/laser-dolphin-mixtral-4x7b-dpo - GGUF

This repo contains GGUF format model files for macadeliccc/laser-dolphin-mixtral-4x7b-dpo.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
laser-dolphin-mixtral-4x7b-dpo-Q2_K.gguf Q2_K 8.843 GB smallest, significant quality loss - not recommended for most purposes
laser-dolphin-mixtral-4x7b-dpo-Q3_K_S.gguf Q3_K_S 10.433 GB very small, high quality loss
laser-dolphin-mixtral-4x7b-dpo-Q3_K_M.gguf Q3_K_M 11.580 GB very small, high quality loss
laser-dolphin-mixtral-4x7b-dpo-Q3_K_L.gguf Q3_K_L 12.544 GB small, substantial quality loss
laser-dolphin-mixtral-4x7b-dpo-Q4_0.gguf Q4_0 13.624 GB legacy; small, very high quality loss - prefer using Q3_K_M
laser-dolphin-mixtral-4x7b-dpo-Q4_K_S.gguf Q4_K_S 13.743 GB small, greater quality loss
laser-dolphin-mixtral-4x7b-dpo-Q4_K_M.gguf Q4_K_M 14.610 GB medium, balanced quality - recommended
laser-dolphin-mixtral-4x7b-dpo-Q5_0.gguf Q5_0 16.626 GB legacy; medium, balanced quality - prefer using Q4_K_M
laser-dolphin-mixtral-4x7b-dpo-Q5_K_S.gguf Q5_K_S 16.626 GB large, low quality loss - recommended
laser-dolphin-mixtral-4x7b-dpo-Q5_K_M.gguf Q5_K_M 17.134 GB large, very low quality loss - recommended
laser-dolphin-mixtral-4x7b-dpo-Q6_K.gguf Q6_K 19.817 GB very large, extremely low quality loss
laser-dolphin-mixtral-4x7b-dpo-Q8_0.gguf Q8_0 25.666 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/laser-dolphin-mixtral-4x7b-dpo-GGUF --include "laser-dolphin-mixtral-4x7b-dpo-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/laser-dolphin-mixtral-4x7b-dpo-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'