morriszms's picture
Upload folder using huggingface_hub
7a19a67 verified
metadata
library_name: transformers
license: apache-2.0
datasets:
  - BeastyZ/E5-R
language:
  - en
tags:
  - mteb
  - TensorBlock
  - GGUF
base_model: BeastyZ/e5-R-mistral-7b
model-index:
  - name: e5-R-mistral-7b
    results:
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: mteb/arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.57
          - type: map_at_10
            value: 49.952000000000005
          - type: map_at_100
            value: 50.673
          - type: map_at_1000
            value: 50.674
          - type: map_at_3
            value: 44.915
          - type: map_at_5
            value: 47.876999999999995
          - type: mrr_at_1
            value: 34.211000000000006
          - type: mrr_at_10
            value: 50.19
          - type: mrr_at_100
            value: 50.905
          - type: mrr_at_1000
            value: 50.906
          - type: mrr_at_3
            value: 45.128
          - type: mrr_at_5
            value: 48.097
          - type: ndcg_at_1
            value: 33.57
          - type: ndcg_at_10
            value: 58.994
          - type: ndcg_at_100
            value: 61.806000000000004
          - type: ndcg_at_1000
            value: 61.824999999999996
          - type: ndcg_at_3
            value: 48.681000000000004
          - type: ndcg_at_5
            value: 54.001
          - type: precision_at_1
            value: 33.57
          - type: precision_at_10
            value: 8.784
          - type: precision_at_100
            value: 0.9950000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.867
          - type: precision_at_5
            value: 14.495
          - type: recall_at_1
            value: 33.57
          - type: recall_at_10
            value: 87.83800000000001
          - type: recall_at_100
            value: 99.502
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 59.602
          - type: recall_at_5
            value: 72.475
          - type: main_score
            value: 58.994
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: mteb/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.75
          - type: map_at_10
            value: 34.025
          - type: map_at_100
            value: 35.126000000000005
          - type: map_at_1000
            value: 35.219
          - type: map_at_3
            value: 31.607000000000003
          - type: map_at_5
            value: 32.962
          - type: mrr_at_1
            value: 27.357
          - type: mrr_at_10
            value: 36.370999999999995
          - type: mrr_at_100
            value: 37.364000000000004
          - type: mrr_at_1000
            value: 37.423
          - type: mrr_at_3
            value: 34.288000000000004
          - type: mrr_at_5
            value: 35.434
          - type: ndcg_at_1
            value: 27.357
          - type: ndcg_at_10
            value: 46.593999999999994
          - type: ndcg_at_100
            value: 44.317
          - type: ndcg_at_1000
            value: 46.475
          - type: ndcg_at_3
            value: 34.473
          - type: ndcg_at_5
            value: 36.561
          - type: precision_at_1
            value: 27.357
          - type: precision_at_10
            value: 6.081
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 14.911
          - type: precision_at_5
            value: 10.24
          - type: recall_at_1
            value: 24.75
          - type: recall_at_10
            value: 51.856
          - type: recall_at_100
            value: 76.44300000000001
          - type: recall_at_1000
            value: 92.078
          - type: recall_at_3
            value: 39.427
          - type: recall_at_5
            value: 44.639
          - type: main_score
            value: 46.593999999999994
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: mteb/climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.436
          - type: map_at_10
            value: 29.693
          - type: map_at_100
            value: 32.179
          - type: map_at_1000
            value: 32.353
          - type: map_at_3
            value: 24.556
          - type: map_at_5
            value: 27.105
          - type: mrr_at_1
            value: 37.524
          - type: mrr_at_10
            value: 51.475
          - type: mrr_at_100
            value: 52.107000000000006
          - type: mrr_at_1000
            value: 52.123
          - type: mrr_at_3
            value: 48.35
          - type: mrr_at_5
            value: 50.249
          - type: ndcg_at_1
            value: 37.524
          - type: ndcg_at_10
            value: 40.258
          - type: ndcg_at_100
            value: 48.364000000000004
          - type: ndcg_at_1000
            value: 51.031000000000006
          - type: ndcg_at_3
            value: 33.359
          - type: ndcg_at_5
            value: 35.573
          - type: precision_at_1
            value: 37.524
          - type: precision_at_10
            value: 12.886000000000001
          - type: precision_at_100
            value: 2.169
          - type: precision_at_1000
            value: 0.268
          - type: precision_at_3
            value: 25.624000000000002
          - type: precision_at_5
            value: 19.453
          - type: recall_at_1
            value: 16.436
          - type: recall_at_10
            value: 47.77
          - type: recall_at_100
            value: 74.762
          - type: recall_at_1000
            value: 89.316
          - type: recall_at_3
            value: 30.508000000000003
          - type: recall_at_5
            value: 37.346000000000004
          - type: main_score
            value: 40.258
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: mteb/dbpedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.147
          - type: map_at_10
            value: 24.631
          - type: map_at_100
            value: 35.657
          - type: map_at_1000
            value: 37.824999999999996
          - type: map_at_3
            value: 16.423
          - type: map_at_5
            value: 19.666
          - type: mrr_at_1
            value: 76.5
          - type: mrr_at_10
            value: 82.793
          - type: mrr_at_100
            value: 83.015
          - type: mrr_at_1000
            value: 83.021
          - type: mrr_at_3
            value: 81.75
          - type: mrr_at_5
            value: 82.375
          - type: ndcg_at_1
            value: 64.75
          - type: ndcg_at_10
            value: 51.031000000000006
          - type: ndcg_at_100
            value: 56.005
          - type: ndcg_at_1000
            value: 63.068000000000005
          - type: ndcg_at_3
            value: 54.571999999999996
          - type: ndcg_at_5
            value: 52.66499999999999
          - type: precision_at_1
            value: 76.5
          - type: precision_at_10
            value: 42.15
          - type: precision_at_100
            value: 13.22
          - type: precision_at_1000
            value: 2.5989999999999998
          - type: precision_at_3
            value: 58.416999999999994
          - type: precision_at_5
            value: 52.2
          - type: recall_at_1
            value: 10.147
          - type: recall_at_10
            value: 30.786
          - type: recall_at_100
            value: 62.873000000000005
          - type: recall_at_1000
            value: 85.358
          - type: recall_at_3
            value: 17.665
          - type: recall_at_5
            value: 22.088
          - type: main_score
            value: 51.031000000000006
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: mteb/fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 78.52900000000001
          - type: map_at_10
            value: 87.24199999999999
          - type: map_at_100
            value: 87.446
          - type: map_at_1000
            value: 87.457
          - type: map_at_3
            value: 86.193
          - type: map_at_5
            value: 86.898
          - type: mrr_at_1
            value: 84.518
          - type: mrr_at_10
            value: 90.686
          - type: mrr_at_100
            value: 90.73
          - type: mrr_at_1000
            value: 90.731
          - type: mrr_at_3
            value: 90.227
          - type: mrr_at_5
            value: 90.575
          - type: ndcg_at_1
            value: 84.518
          - type: ndcg_at_10
            value: 90.324
          - type: ndcg_at_100
            value: 90.96300000000001
          - type: ndcg_at_1000
            value: 91.134
          - type: ndcg_at_3
            value: 88.937
          - type: ndcg_at_5
            value: 89.788
          - type: precision_at_1
            value: 84.518
          - type: precision_at_10
            value: 10.872
          - type: precision_at_100
            value: 1.1440000000000001
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 34.108
          - type: precision_at_5
            value: 21.154999999999998
          - type: recall_at_1
            value: 78.52900000000001
          - type: recall_at_10
            value: 96.123
          - type: recall_at_100
            value: 98.503
          - type: recall_at_1000
            value: 99.518
          - type: recall_at_3
            value: 92.444
          - type: recall_at_5
            value: 94.609
          - type: main_score
            value: 90.324
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: mteb/fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.38
          - type: map_at_10
            value: 50.28
          - type: map_at_100
            value: 52.532999999999994
          - type: map_at_1000
            value: 52.641000000000005
          - type: map_at_3
            value: 43.556
          - type: map_at_5
            value: 47.617
          - type: mrr_at_1
            value: 56.79
          - type: mrr_at_10
            value: 65.666
          - type: mrr_at_100
            value: 66.211
          - type: mrr_at_1000
            value: 66.226
          - type: mrr_at_3
            value: 63.452
          - type: mrr_at_5
            value: 64.895
          - type: ndcg_at_1
            value: 56.79
          - type: ndcg_at_10
            value: 58.68
          - type: ndcg_at_100
            value: 65.22
          - type: ndcg_at_1000
            value: 66.645
          - type: ndcg_at_3
            value: 53.981
          - type: ndcg_at_5
            value: 55.95
          - type: precision_at_1
            value: 56.79
          - type: precision_at_10
            value: 16.311999999999998
          - type: precision_at_100
            value: 2.316
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 36.214
          - type: precision_at_5
            value: 27.067999999999998
          - type: recall_at_1
            value: 29.38
          - type: recall_at_10
            value: 66.503
          - type: recall_at_100
            value: 89.885
          - type: recall_at_1000
            value: 97.954
          - type: recall_at_3
            value: 48.866
          - type: recall_at_5
            value: 57.60999999999999
          - type: main_score
            value: 58.68
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: mteb/hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.134
          - type: map_at_10
            value: 73.412
          - type: map_at_100
            value: 74.144
          - type: map_at_1000
            value: 74.181
          - type: map_at_3
            value: 70.016
          - type: map_at_5
            value: 72.174
          - type: mrr_at_1
            value: 84.267
          - type: mrr_at_10
            value: 89.18599999999999
          - type: mrr_at_100
            value: 89.29599999999999
          - type: mrr_at_1000
            value: 89.298
          - type: mrr_at_3
            value: 88.616
          - type: mrr_at_5
            value: 88.957
          - type: ndcg_at_1
            value: 84.267
          - type: ndcg_at_10
            value: 80.164
          - type: ndcg_at_100
            value: 82.52199999999999
          - type: ndcg_at_1000
            value: 83.176
          - type: ndcg_at_3
            value: 75.616
          - type: ndcg_at_5
            value: 78.184
          - type: precision_at_1
            value: 84.267
          - type: precision_at_10
            value: 16.916
          - type: precision_at_100
            value: 1.872
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 49.71
          - type: precision_at_5
            value: 31.854
          - type: recall_at_1
            value: 42.134
          - type: recall_at_10
            value: 84.578
          - type: recall_at_100
            value: 93.606
          - type: recall_at_1000
            value: 97.86
          - type: recall_at_3
            value: 74.564
          - type: recall_at_5
            value: 79.635
          - type: main_score
            value: 80.164
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: mteb/msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.276
          - type: map_at_10
            value: 35.493
          - type: map_at_100
            value: 36.656
          - type: map_at_1000
            value: 36.699
          - type: map_at_3
            value: 31.320999999999998
          - type: map_at_5
            value: 33.772999999999996
          - type: mrr_at_1
            value: 22.966
          - type: mrr_at_10
            value: 36.074
          - type: mrr_at_100
            value: 37.183
          - type: mrr_at_1000
            value: 37.219
          - type: mrr_at_3
            value: 31.984
          - type: mrr_at_5
            value: 34.419
          - type: ndcg_at_1
            value: 22.966
          - type: ndcg_at_10
            value: 42.895
          - type: ndcg_at_100
            value: 48.453
          - type: ndcg_at_1000
            value: 49.464999999999996
          - type: ndcg_at_3
            value: 34.410000000000004
          - type: ndcg_at_5
            value: 38.78
          - type: precision_at_1
            value: 22.966
          - type: precision_at_10
            value: 6.88
          - type: precision_at_100
            value: 0.966
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.785
          - type: precision_at_5
            value: 11.074
          - type: recall_at_1
            value: 22.276
          - type: recall_at_10
            value: 65.756
          - type: recall_at_100
            value: 91.34100000000001
          - type: recall_at_1000
            value: 98.957
          - type: recall_at_3
            value: 42.67
          - type: recall_at_5
            value: 53.161
          - type: main_score
            value: 42.895
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: mteb/nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.188999999999999
          - type: map_at_10
            value: 16.176
          - type: map_at_100
            value: 20.504
          - type: map_at_1000
            value: 22.203999999999997
          - type: map_at_3
            value: 11.766
          - type: map_at_5
            value: 13.655999999999999
          - type: mrr_at_1
            value: 55.418
          - type: mrr_at_10
            value: 62.791
          - type: mrr_at_100
            value: 63.339
          - type: mrr_at_1000
            value: 63.369
          - type: mrr_at_3
            value: 60.99099999999999
          - type: mrr_at_5
            value: 62.059
          - type: ndcg_at_1
            value: 53.715
          - type: ndcg_at_10
            value: 41.377
          - type: ndcg_at_100
            value: 37.999
          - type: ndcg_at_1000
            value: 46.726
          - type: ndcg_at_3
            value: 47.262
          - type: ndcg_at_5
            value: 44.708999999999996
          - type: precision_at_1
            value: 55.108000000000004
          - type: precision_at_10
            value: 30.154999999999998
          - type: precision_at_100
            value: 9.582
          - type: precision_at_1000
            value: 2.2720000000000002
          - type: precision_at_3
            value: 43.55
          - type: precision_at_5
            value: 38.204
          - type: recall_at_1
            value: 7.188999999999999
          - type: recall_at_10
            value: 20.655
          - type: recall_at_100
            value: 38.068000000000005
          - type: recall_at_1000
            value: 70.208
          - type: recall_at_3
            value: 12.601
          - type: recall_at_5
            value: 15.573999999999998
          - type: main_score
            value: 41.377
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: mteb/nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 46.017
          - type: map_at_10
            value: 62.910999999999994
          - type: map_at_100
            value: 63.526
          - type: map_at_1000
            value: 63.536
          - type: map_at_3
            value: 59.077999999999996
          - type: map_at_5
            value: 61.521
          - type: mrr_at_1
            value: 51.68000000000001
          - type: mrr_at_10
            value: 65.149
          - type: mrr_at_100
            value: 65.542
          - type: mrr_at_1000
            value: 65.55
          - type: mrr_at_3
            value: 62.49
          - type: mrr_at_5
            value: 64.178
          - type: ndcg_at_1
            value: 51.651
          - type: ndcg_at_10
            value: 69.83500000000001
          - type: ndcg_at_100
            value: 72.18
          - type: ndcg_at_1000
            value: 72.393
          - type: ndcg_at_3
            value: 63.168
          - type: ndcg_at_5
            value: 66.958
          - type: precision_at_1
            value: 51.651
          - type: precision_at_10
            value: 10.626
          - type: precision_at_100
            value: 1.195
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 28.012999999999998
          - type: precision_at_5
            value: 19.09
          - type: recall_at_1
            value: 46.017
          - type: recall_at_10
            value: 88.345
          - type: recall_at_100
            value: 98.129
          - type: recall_at_1000
            value: 99.696
          - type: recall_at_3
            value: 71.531
          - type: recall_at_5
            value: 80.108
          - type: main_score
            value: 69.83500000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: mteb/quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 72.473
          - type: map_at_10
            value: 86.72800000000001
          - type: map_at_100
            value: 87.323
          - type: map_at_1000
            value: 87.332
          - type: map_at_3
            value: 83.753
          - type: map_at_5
            value: 85.627
          - type: mrr_at_1
            value: 83.39
          - type: mrr_at_10
            value: 89.149
          - type: mrr_at_100
            value: 89.228
          - type: mrr_at_1000
            value: 89.229
          - type: mrr_at_3
            value: 88.335
          - type: mrr_at_5
            value: 88.895
          - type: ndcg_at_1
            value: 83.39
          - type: ndcg_at_10
            value: 90.109
          - type: ndcg_at_100
            value: 91.09
          - type: ndcg_at_1000
            value: 91.13900000000001
          - type: ndcg_at_3
            value: 87.483
          - type: ndcg_at_5
            value: 88.942
          - type: precision_at_1
            value: 83.39
          - type: precision_at_10
            value: 13.711
          - type: precision_at_100
            value: 1.549
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.342999999999996
          - type: precision_at_5
            value: 25.188
          - type: recall_at_1
            value: 72.473
          - type: recall_at_10
            value: 96.57
          - type: recall_at_100
            value: 99.792
          - type: recall_at_1000
            value: 99.99900000000001
          - type: recall_at_3
            value: 88.979
          - type: recall_at_5
            value: 93.163
          - type: main_score
            value: 90.109
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: mteb/scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.598
          - type: map_at_10
            value: 11.405999999999999
          - type: map_at_100
            value: 13.447999999999999
          - type: map_at_1000
            value: 13.758999999999999
          - type: map_at_3
            value: 8.332
          - type: map_at_5
            value: 9.709
          - type: mrr_at_1
            value: 22.6
          - type: mrr_at_10
            value: 32.978
          - type: mrr_at_100
            value: 34.149
          - type: mrr_at_1000
            value: 34.213
          - type: mrr_at_3
            value: 29.7
          - type: mrr_at_5
            value: 31.485000000000003
          - type: ndcg_at_1
            value: 22.6
          - type: ndcg_at_10
            value: 19.259999999999998
          - type: ndcg_at_100
            value: 27.21
          - type: ndcg_at_1000
            value: 32.7
          - type: ndcg_at_3
            value: 18.445
          - type: ndcg_at_5
            value: 15.812000000000001
          - type: precision_at_1
            value: 22.6
          - type: precision_at_10
            value: 9.959999999999999
          - type: precision_at_100
            value: 2.139
          - type: precision_at_1000
            value: 0.345
          - type: precision_at_3
            value: 17.299999999999997
          - type: precision_at_5
            value: 13.719999999999999
          - type: recall_at_1
            value: 4.598
          - type: recall_at_10
            value: 20.186999999999998
          - type: recall_at_100
            value: 43.362
          - type: recall_at_1000
            value: 70.11800000000001
          - type: recall_at_3
            value: 10.543
          - type: recall_at_5
            value: 13.923
          - type: main_score
            value: 19.259999999999998
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: mteb/scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 65.467
          - type: map_at_10
            value: 74.935
          - type: map_at_100
            value: 75.395
          - type: map_at_1000
            value: 75.412
          - type: map_at_3
            value: 72.436
          - type: map_at_5
            value: 73.978
          - type: mrr_at_1
            value: 68.667
          - type: mrr_at_10
            value: 76.236
          - type: mrr_at_100
            value: 76.537
          - type: mrr_at_1000
            value: 76.55499999999999
          - type: mrr_at_3
            value: 74.722
          - type: mrr_at_5
            value: 75.639
          - type: ndcg_at_1
            value: 68.667
          - type: ndcg_at_10
            value: 78.92099999999999
          - type: ndcg_at_100
            value: 80.645
          - type: ndcg_at_1000
            value: 81.045
          - type: ndcg_at_3
            value: 75.19500000000001
          - type: ndcg_at_5
            value: 77.114
          - type: precision_at_1
            value: 68.667
          - type: precision_at_10
            value: 10.133000000000001
          - type: precision_at_100
            value: 1.0999999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.889
          - type: precision_at_5
            value: 18.8
          - type: recall_at_1
            value: 65.467
          - type: recall_at_10
            value: 89.517
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 79.72200000000001
          - type: recall_at_5
            value: 84.511
          - type: main_score
            value: 78.92099999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: mteb/trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.244
          - type: map_at_10
            value: 2.183
          - type: map_at_100
            value: 13.712
          - type: map_at_1000
            value: 33.147
          - type: map_at_3
            value: 0.7270000000000001
          - type: map_at_5
            value: 1.199
          - type: mrr_at_1
            value: 94
          - type: mrr_at_10
            value: 97
          - type: mrr_at_100
            value: 97
          - type: mrr_at_1000
            value: 97
          - type: mrr_at_3
            value: 97
          - type: mrr_at_5
            value: 97
          - type: ndcg_at_1
            value: 92
          - type: ndcg_at_10
            value: 84.399
          - type: ndcg_at_100
            value: 66.771
          - type: ndcg_at_1000
            value: 59.092
          - type: ndcg_at_3
            value: 89.173
          - type: ndcg_at_5
            value: 88.52600000000001
          - type: precision_at_1
            value: 94
          - type: precision_at_10
            value: 86.8
          - type: precision_at_100
            value: 68.24
          - type: precision_at_1000
            value: 26.003999999999998
          - type: precision_at_3
            value: 92.667
          - type: precision_at_5
            value: 92.4
          - type: recall_at_1
            value: 0.244
          - type: recall_at_10
            value: 2.302
          - type: recall_at_100
            value: 16.622
          - type: recall_at_1000
            value: 55.175
          - type: recall_at_3
            value: 0.748
          - type: recall_at_5
            value: 1.247
          - type: main_score
            value: 84.399
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: mteb/touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.707
          - type: map_at_10
            value: 10.917
          - type: map_at_100
            value: 16.308
          - type: map_at_1000
            value: 17.953
          - type: map_at_3
            value: 5.65
          - type: map_at_5
            value: 7.379
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 49.745
          - type: mrr_at_100
            value: 50.309000000000005
          - type: mrr_at_1000
            value: 50.32
          - type: mrr_at_3
            value: 44.897999999999996
          - type: mrr_at_5
            value: 48.061
          - type: ndcg_at_1
            value: 33.672999999999995
          - type: ndcg_at_10
            value: 26.894000000000002
          - type: ndcg_at_100
            value: 37.423
          - type: ndcg_at_1000
            value: 49.376999999999995
          - type: ndcg_at_3
            value: 30.456
          - type: ndcg_at_5
            value: 27.772000000000002
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 23.878
          - type: precision_at_100
            value: 7.489999999999999
          - type: precision_at_1000
            value: 1.555
          - type: precision_at_3
            value: 31.293
          - type: precision_at_5
            value: 26.939
          - type: recall_at_1
            value: 2.707
          - type: recall_at_10
            value: 18.104
          - type: recall_at_100
            value: 46.93
          - type: recall_at_1000
            value: 83.512
          - type: recall_at_3
            value: 6.622999999999999
          - type: recall_at_5
            value: 10.051
          - type: main_score
            value: 26.894000000000002
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

BeastyZ/e5-R-mistral-7b - GGUF

This repo contains GGUF format model files for BeastyZ/e5-R-mistral-7b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
e5-R-mistral-7b-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
e5-R-mistral-7b-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
e5-R-mistral-7b-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
e5-R-mistral-7b-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
e5-R-mistral-7b-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
e5-R-mistral-7b-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
e5-R-mistral-7b-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
e5-R-mistral-7b-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
e5-R-mistral-7b-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
e5-R-mistral-7b-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
e5-R-mistral-7b-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
e5-R-mistral-7b-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/e5-R-mistral-7b-GGUF --include "e5-R-mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/e5-R-mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'