metadata
language:
- en
license: other
library_name: transformers
datasets:
- Open-Orca/SlimOrca
- m-a-p/Code-Feedback
- MaziyarPanahi/WizardLM_evol_instruct_V2_196k
- camel-ai/math
- camel-ai/physics
- camel-ai/biology
- camel-ai/chemistry
- LDJnr/Capybara
- jondurbin/airoboros-3.2
- microsoft/orca-math-word-problems-200k
inference:
parameters:
do_sample: true
temperature: 0.8
top_p: 0.95
top_k: 40
max_new_tokens: 250
repetition_penalty: 1.1
base_model: M4-ai/Orca-2.0-Tau-1.8B
tags:
- TensorBlock
- GGUF
model-index:
- name: Orca-2.0-Tau-1.8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 37.12
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 61.13
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 45.27
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 39.1
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.59
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.96
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=M4-ai/Orca-2.0-Tau-1.8B
name: Open LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
M4-ai/Orca-2.0-Tau-1.8B - GGUF
This repo contains GGUF format model files for M4-ai/Orca-2.0-Tau-1.8B.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Orca-2.0-Tau-1.8B-Q2_K.gguf | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes |
Orca-2.0-Tau-1.8B-Q3_K_S.gguf | Q3_K_S | 0.954 GB | very small, high quality loss |
Orca-2.0-Tau-1.8B-Q3_K_M.gguf | Q3_K_M | 1.016 GB | very small, high quality loss |
Orca-2.0-Tau-1.8B-Q3_K_L.gguf | Q3_K_L | 1.056 GB | small, substantial quality loss |
Orca-2.0-Tau-1.8B-Q4_0.gguf | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Orca-2.0-Tau-1.8B-Q4_K_S.gguf | Q4_K_S | 1.158 GB | small, greater quality loss |
Orca-2.0-Tau-1.8B-Q4_K_M.gguf | Q4_K_M | 1.218 GB | medium, balanced quality - recommended |
Orca-2.0-Tau-1.8B-Q5_0.gguf | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Orca-2.0-Tau-1.8B-Q5_K_S.gguf | Q5_K_S | 1.328 GB | large, low quality loss - recommended |
Orca-2.0-Tau-1.8B-Q5_K_M.gguf | Q5_K_M | 1.377 GB | large, very low quality loss - recommended |
Orca-2.0-Tau-1.8B-Q6_K.gguf | Q6_K | 1.579 GB | very large, extremely low quality loss |
Orca-2.0-Tau-1.8B-Q8_0.gguf | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Orca-2.0-Tau-1.8B-GGUF --include "Orca-2.0-Tau-1.8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Orca-2.0-Tau-1.8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'