metadata
library_name: transformers
pipeline_tag: text-generation
language:
- en
tags:
- nvidia
- llama-3
- pytorch
- TensorBlock
- GGUF
license: other
license_name: nvidia-open-model-license
license_link: >-
https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
base_model: nvidia/Llama-3_1-Nemotron-51B-Instruct
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
nvidia/Llama-3_1-Nemotron-51B-Instruct - GGUF
This repo contains GGUF format model files for nvidia/Llama-3_1-Nemotron-51B-Instruct.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4391.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Llama-3_1-Nemotron-51B-Instruct-Q2_K.gguf | Q2_K | 19.419 GB | smallest, significant quality loss - not recommended for most purposes |
Llama-3_1-Nemotron-51B-Instruct-Q3_K_S.gguf | Q3_K_S | 22.652 GB | very small, high quality loss |
Llama-3_1-Nemotron-51B-Instruct-Q3_K_M.gguf | Q3_K_M | 25.182 GB | very small, high quality loss |
Llama-3_1-Nemotron-51B-Instruct-Q3_K_L.gguf | Q3_K_L | 27.350 GB | small, substantial quality loss |
Llama-3_1-Nemotron-51B-Instruct-Q4_0.gguf | Q4_0 | 29.252 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Llama-3_1-Nemotron-51B-Instruct-Q4_K_S.gguf | Q4_K_S | 29.484 GB | small, greater quality loss |
Llama-3_1-Nemotron-51B-Instruct-Q4_K_M.gguf | Q4_K_M | 31.037 GB | medium, balanced quality - recommended |
Llama-3_1-Nemotron-51B-Instruct-Q5_0.gguf | Q5_0 | 35.559 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Llama-3_1-Nemotron-51B-Instruct-Q5_K_S.gguf | Q5_K_S | 35.559 GB | large, low quality loss - recommended |
Llama-3_1-Nemotron-51B-Instruct-Q5_K_M.gguf | Q5_K_M | 36.465 GB | large, very low quality loss - recommended |
Llama-3_1-Nemotron-51B-Instruct-Q6_K.gguf | Q6_K | 42.259 GB | very large, extremely low quality loss |
Llama-3_1-Nemotron-51B-Instruct-Q8_0 | Q8_0 | 54.731 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Llama-3_1-Nemotron-51B-Instruct-GGUF --include "Llama-3_1-Nemotron-51B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Llama-3_1-Nemotron-51B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'