videomae-base-finetuned-ucf101-subset

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1199
  • Accuracy: 0.9714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 600

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2409 0.06 37 2.2371 0.1429
1.3169 1.06 75 1.1241 0.6571
0.5831 2.06 112 0.5958 0.7857
0.5517 3.06 150 0.4112 0.8143
0.398 4.06 187 0.3376 0.8429
0.1959 5.06 225 0.4228 0.8857
0.1159 6.06 262 0.3382 0.8571
0.015 7.06 300 0.3205 0.9
0.0316 8.06 337 0.3495 0.8857
0.0242 9.06 375 0.1675 0.9429
0.005 10.06 412 0.2990 0.9286
0.0047 11.06 450 0.1553 0.9429
0.0044 12.06 487 0.1390 0.9571
0.0039 13.06 525 0.1406 0.9429
0.0107 14.06 562 0.1184 0.9571
0.0034 15.06 600 0.1199 0.9714

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.0
  • Tokenizers 0.13.3
Downloads last month
60
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for techtank/videomae-base-finetuned-ucf101-subset

Finetuned
(463)
this model