language: | |
- en | |
metrics: | |
- accuracy | |
- AUC ROC | |
- precision | |
- recall | |
tags: | |
- biology | |
- chemistry | |
- therapeutic science | |
- drug design | |
- drug development | |
- therapeutics | |
library_name: tdc | |
license: bsd-2-clause | |
COMING SOON | |
weights extracted from https://cellxgene.cziscience.com/census-models | |
## Model description | |
Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks. | |
To load the pre-trained model, use the Files and Versions tab files. | |
## References | |
* Lopez, R., Regier, J., Cole, M., Jordan, M. I., & Yosef, N. (2018). Deep Generative Modeling for Single-cell Transcriptomics. Nature Methods, 15, 1053-1058. | |
* Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C. A., Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E., Talavera-López, C., ... Yosef, N. (2021). scvi-tools: a library for deep probabilistic analysis of single-cell omics data. bioRxiv. | |
* CZ CELLxGENE Discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data CZI Single-Cell Biology, et al. bioRxiv 2023.10.30; doi: https://doi.org/10.1101/2023.10.30.563174 |