This model is quantized by autoawq package using tctsung/chat_restaurant_recommendation
as calibration dataset
Reference model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
Key results:
- AWQ quantization resulted in a 1.62x improvement in inference speed, generating 140.47 new tokens per second.
- The model size was compressed from 4.4GB to 0.78GB, representing a reduction in memory footprint to only 17.57% of the original model.
- I used 6 different LLM tasks to demonstrate that the quantized model maintains similar accuracy, with a maximum accuracy degradation of only ~1%
For more details, see github repo tctsung/LLM_quantize
Inference tutorial
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
# load model & tokenizer:
model_id = "tctsung/TinyLlama-1.1B-chat-v1.0-awq"
model = LLM(model = model_id, dtype='half',
quantization='awq', gpu_memory_utilization=0.9)
sampling_params = SamplingParams(temperature=1.0,
max_tokens=1024,
min_p=0.5,
top_p=0.85)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# define your own sys & user msg:
sys_msg = "..."
user_msg = "..."
chat_msg = [
{"role": "system", "content": sys_msg},
{"role": "user", "content": user_msg}
]
input_text = tokenizer.apply_chat_template(chat_msg, tokenize=False, add_generation_prompt=False)
output = model.generate(input_text, sampling_params)
output_text = output[0].outputs[0].text
print(output_text) # show the model output
- Downloads last month
- 86
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.