See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-128k
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- cff7ac798e6d5dcd_train_data.json
ds_type: json
format: custom
path: cff7ac798e6d5dcd_train_data.json
preprocessing:
- shuffle: true
type:
field: null
field_input: input
field_instruction: instruction
field_output: response
field_system: null
format: null
no_input_format: null
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: taopanda/test-Yarn-Llama-2-7b-128k
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 150
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: ./outputs/lora-out/taopanda_test-Yarn-Llama-2-7b-128k
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
save_steps: 0.25
save_total_limit: 1
seed: 42
sequence_len: 1024
special_tokens: null
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda_test-Yarn-Llama-2-7b-128k
wandb_project: subnet56-test
wandb_runid: taopanda_test-Yarn-Llama-2-7b-128k
wandb_watch: null
warmup_ratio: 0.06
weight_decay: 0.0
xformers_attention: null
test-Yarn-Llama-2-7b-128k
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0518
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 4
- training_steps: 81
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.8167 | 0.0124 | 1 | 2.8724 |
1.6497 | 0.2112 | 17 | 1.5763 |
1.3523 | 0.4224 | 34 | 1.3288 |
0.9764 | 0.6335 | 51 | 1.1532 |
0.9666 | 0.8447 | 68 | 1.0518 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for taopanda/test-Yarn-Llama-2-7b-128k
Base model
NousResearch/Yarn-Llama-2-7b-128k