File size: 1,777 Bytes
2e7c1b7 1226e9d 2e7c1b7 1226e9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- ja
license: other
tags:
- text-generation-inference
- transformers
- unsloth
- trl
- gemma
datasets:
- kunishou/amenokaku-code-instruct
license_name: gemma
base_model: unsloth/gemma-2b-it-bnb-4bit
---
# Uploaded model
- **Developed by:** taoki
- **License:** gemma
- **Finetuned from model :** unsloth/gemma-2b-it-bnb-4bit
# Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
model = AutoModelForCausalLM.from_pretrained(
"taoki/gemma-2b-it-qlora-amenokaku-code"
)
if torch.cuda.is_available():
model = model.to("cuda")
prompt="""<start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。
<end_of_turn>
<start_of_turn>model
"""
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**input_ids,
max_new_tokens=512,
do_sample=True,
top_p=0.95,
temperature=0.1,
repetition_penalty=1.0,
)
print(tokenizer.decode(outputs[0]))
```
# Output
````
<bos><start_of_turn>user
紫式部と清少納言の作風をjsonで出力してください。<end_of_turn>
<start_of_turn>model
```json
{
"紫式部": {
"style": "紫式部",
"name": "紫式部",
"description": "紫式部の作風"
},
"清少納言": {
"style": "清少納言",
"name": "清少納言",
"description": "清少納言の作風"
}
}
```<eos>
````
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |