File size: 6,686 Bytes
75050d9 a07758a 75050d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gc
from datasets import load_dataset
from litdata import optimize, TokensLoader
from litgpt.tokenizer import Tokenizer
from functools import partial
def batch_iterator(name=None):
# code
if name in (None, 'bigcode/programming-languages-keywords'):
dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
for row in dataset:
for n in row['keywords']:
yield n
del dataset
gc.collect()
# code
if name in (None, 'bigcode/the-stack-smol-xs'):
dataset = (
load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
for lang in [
'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
]
)
for d in dataset:
for row in d:
yield row['content']
del dataset
gc.collect()
# text
if name in (None, 'nampdn-ai/tiny-textbooks'):
dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
for row in dataset:
yield row['text']
del dataset
gc.collect()
# text
if name in (None, 'xu-song/cc100-samples'):
dataset = (
load_dataset('xu-song/cc100-samples', lang, split='train')
for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
)
for d in dataset:
for row in d['text']:
yield row
del dataset
gc.collect()
# code
if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'):
dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
for row in dataset:
yield row['query'] + '\n' + row['answer']
del dataset
gc.collect()
# code
if name in (None, 'nampdn-ai/tiny-codes'):
dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
for row in dataset:
yield row['prompt'] + '\n' + row['response']
del dataset
gc.collect()
# math
if name in (None, 'ajibawa-2023/Maths-College'):
dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
for row in dataset:
yield row['instruction'] + '\n' + row['output']
del dataset
gc.collect()
# math
if name in (None, 'microsoft/orca-math-word-problems-200k'):
dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
for row in dataset:
yield row['question'] + '\n' + row['answer']
del dataset
gc.collect()
# text
if name in (None, 'mlabonne/FineTome-100k'):
dataset = load_dataset('mlabonne/FineTome-100k', split='train')
for row in dataset['conversations']:
yield '\n'.join(n['value'] for n in row)
del dataset
gc.collect()
# instruction
if name in (None, 'arcee-ai/agent-data'):
dataset = load_dataset('arcee-ai/agent-data', split='train')
for row in dataset['conversations']:
yield '\n'.join(n['value'] for n in row)
del dataset
gc.collect()
# instruction
if name in (None, 'cognitivecomputations/SystemChat-2.0'):
dataset = (
load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
)
for d in dataset:
for row in d['messages']:
yield '\n'.join(n['content'] for n in row)
del dataset
gc.collect()
# emoji
if name in (None, 'badrex/llm-emoji-dataset'):
dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
for row in dataset:
yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
del dataset
gc.collect()
def tokenize_fn(dataset_name, tokenizer=None):
for text in batch_iterator(dataset_name):
text_ids = tokenizer.encode(text, bos=False, eos=True)
yield text_ids
datasets_names = [
'bigcode/programming-languages-keywords',
'bigcode/the-stack-smol-xs',
'nampdn-ai/tiny-textbooks',
'xu-song/cc100-samples',
'm-a-p/CodeFeedback-Filtered-Instruction',
'nampdn-ai/tiny-codes',
'ajibawa-2023/Maths-College',
'microsoft/orca-math-word-problems-200k',
'mlabonne/FineTome-100k',
'arcee-ai/agent-data',
'cognitivecomputations/SystemChat-2.0',
'badrex/llm-emoji-dataset',
]
outputs = optimize(
fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
inputs=datasets_names,
output_dir='../data/',
# Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
chunk_size=(2049 * 8012),
num_workers=16,
)
|