mtasic85 commited on
Commit
75050d9
·
1 Parent(s): baab2e1

prepare dataset

Browse files
.gitignore CHANGED
@@ -161,4 +161,5 @@ cython_debug/
161
  .idea/
162
 
163
  .DS_Store
164
- .ruff_cache
 
 
161
  .idea/
162
 
163
  .DS_Store
164
+ .ruff_cache
165
+ venv*/
scripts/prepare_pretrain_dataset.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+
3
+ from datasets import load_dataset
4
+ from litdata import optimize, TokensLoader
5
+ from litgpt.tokenizer import Tokenizer
6
+ from functools import partial
7
+
8
+
9
+ def batch_iterator(name=None):
10
+ # code
11
+ if name in (None, 'bigcode/programming-languages-keywords'):
12
+ dataset = load_dataset('bigcode/programming-languages-keywords', split='train')
13
+
14
+ for row in dataset:
15
+ for n in row['keywords']:
16
+ yield n
17
+
18
+ del dataset
19
+ gc.collect()
20
+
21
+ # code
22
+ if name in (None, 'bigcode/the-stack-smol-xs'):
23
+ dataset = (
24
+ load_dataset('bigcode/the-stack-smol-xs', lang, split='train', trust_remote_code=True)
25
+ for lang in [
26
+ 'ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison', 'bluespec', 'c',
27
+ 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
28
+ 'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
29
+ 'java-server-pages', 'javascript', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
30
+ 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
31
+ 'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
32
+ 'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
33
+ 'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig'
34
+ ]
35
+ )
36
+
37
+ for d in dataset:
38
+ for row in d:
39
+ yield row['content']
40
+
41
+ del dataset
42
+ gc.collect()
43
+
44
+ # text
45
+ if name in (None, 'nampdn-ai/tiny-textbooks'):
46
+ dataset = load_dataset('nampdn-ai/tiny-textbooks', split='train')
47
+
48
+ for row in dataset:
49
+ yield row['text']
50
+
51
+ del dataset
52
+ gc.collect()
53
+
54
+ # text
55
+ if name in (None, 'xu-song/cc100-samples'):
56
+ dataset = (
57
+ load_dataset('xu-song/cc100-samples', lang, split='train')
58
+ for lang in ['am', 'ar', 'as', 'az', 'be', 'bg', 'bn', 'bn_rom', 'br', 'bs', 'ca', 'cs', 'cy', 'da', 'de', 'el', 'en', 'eo', 'es', 'et', 'eu', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gn', 'gu', 'ha', 'he', 'hi', 'hi_rom', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'ku', 'ky', 'la', 'lg', 'li', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'my_zaw', 'ne', 'nl', 'no', 'ns', 'om', 'or', 'pa', 'pl', 'ps', 'pt', 'qu', 'rm', 'ro', 'ru', 'sa', 'si', 'sc', 'sd', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'ta_rom', 'te', 'te_rom', 'th', 'tl', 'tn', 'tr', 'ug', 'uk', 'ur', 'ur_rom', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh-Hans', 'zh-Hant', 'zu']
59
+ )
60
+
61
+ for d in dataset:
62
+ for row in d['text']:
63
+ yield row
64
+
65
+ del dataset
66
+ gc.collect()
67
+
68
+ # code
69
+ if name in (None, 'm-a-p/CodeFeedback-Filtered-Instruction'):
70
+ dataset = load_dataset('m-a-p/CodeFeedback-Filtered-Instruction', split='train')
71
+
72
+ for row in dataset:
73
+ yield row['query'] + '\n' + row['answer']
74
+
75
+ del dataset
76
+ gc.collect()
77
+
78
+ # code
79
+ if name in (None, 'nampdn-ai/tiny-codes'):
80
+ dataset = load_dataset('nampdn-ai/tiny-codes', split='train')
81
+
82
+ for row in dataset:
83
+ yield row['prompt'] + '\n' + row['response']
84
+
85
+ del dataset
86
+ gc.collect()
87
+
88
+ # math
89
+ if name in (None, 'ajibawa-2023/Maths-College'):
90
+ dataset = load_dataset('ajibawa-2023/Maths-College', split='train')
91
+
92
+ for row in dataset:
93
+ yield row['instruction'] + '\n' + row['output']
94
+
95
+ del dataset
96
+ gc.collect()
97
+
98
+ # math
99
+ if name in (None, 'microsoft/orca-math-word-problems-200k'):
100
+ dataset = load_dataset('microsoft/orca-math-word-problems-200k', split='train')
101
+
102
+ for row in dataset:
103
+ yield row['question'] + '\n' + row['answer']
104
+
105
+ del dataset
106
+ gc.collect()
107
+
108
+ # text
109
+ if name in (None, 'mlabonne/FineTome-100k'):
110
+ dataset = load_dataset('mlabonne/FineTome-100k', split='train')
111
+
112
+ for row in dataset['conversations']:
113
+ yield '\n'.join(n['value'] for n in row)
114
+
115
+ del dataset
116
+ gc.collect()
117
+
118
+ # instruction
119
+ if name in (None, 'arcee-ai/agent-data'):
120
+ dataset = load_dataset('arcee-ai/agent-data', split='train')
121
+
122
+ for row in dataset['conversations']:
123
+ yield '\n'.join(n['value'] for n in row)
124
+
125
+ del dataset
126
+ gc.collect()
127
+
128
+ # instruction
129
+ if name in (None, 'cognitivecomputations/SystemChat-2.0'):
130
+ dataset = (
131
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_filtered.jsonl', split='train'),
132
+ load_dataset('cognitivecomputations/SystemChat-2.0', data_files='SystemChat_multilingual.jsonl', split='train'),
133
+ )
134
+
135
+ for d in dataset:
136
+ for row in d['messages']:
137
+ yield '\n'.join(n['content'] for n in row)
138
+
139
+ del dataset
140
+ gc.collect()
141
+
142
+ # emoji
143
+ if name in (None, 'badrex/llm-emoji-dataset'):
144
+ dataset = load_dataset('badrex/llm-emoji-dataset', split='train')
145
+
146
+ for row in dataset:
147
+ yield f'{row["character"]}\n{row["unicode"]}\n{row["short description"]}\n{row["tags"]}\n{row["LLM description"]}'
148
+
149
+ del dataset
150
+ gc.collect()
151
+
152
+
153
+ def tokenize_fn(dataset_name, tokenizer=None):
154
+ for text in batch_iterator(dataset_name):
155
+ text_ids = tokenizer.encode(text, bos=False, eos=True)
156
+ yield text_ids
157
+
158
+ datasets_names = [
159
+ 'bigcode/programming-languages-keywords',
160
+ 'bigcode/the-stack-smol-xs',
161
+ 'nampdn-ai/tiny-textbooks',
162
+ 'xu-song/cc100-samples',
163
+ 'm-a-p/CodeFeedback-Filtered-Instruction',
164
+ 'nampdn-ai/tiny-codes',
165
+ 'ajibawa-2023/Maths-College',
166
+ 'microsoft/orca-math-word-problems-200k',
167
+ 'mlabonne/FineTome-100k',
168
+ 'arcee-ai/agent-data',
169
+ 'cognitivecomputations/SystemChat-2.0',
170
+ 'badrex/llm-emoji-dataset',
171
+ ]
172
+
173
+ outputs = optimize(
174
+ fn=partial(tokenize_fn, tokenizer=Tokenizer('..')),
175
+ inputs=datasets_names,
176
+ output_dir='../data/',
177
+ # Number of tokens to store by chunks. This is roughly 64MB of tokens per chunk.
178
+ chunk_size=(2049 * 8012),
179
+ )
scripts/requirements-lit.in ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
2
+ tqdm
3
+ datasets
4
+ jinja2
5
+ transformers
6
+ bitsandbytes
7
+ wandb
8
+ litgpt[all]
9
+ litdata
scripts/requirements.in CHANGED
@@ -2,6 +2,5 @@ tqdm
2
  datasets
3
  jinja2
4
  transformers
5
- jsonlines
6
  bitsandbytes
7
  wandb
 
2
  datasets
3
  jinja2
4
  transformers
 
5
  bitsandbytes
6
  wandb