This model is finetune on Japanese and English prompt
Usage:
Init model:
To use in code:
import torch
import peft
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
tokenizer = LlamaTokenizer.from_pretrained(
"decapoda-research/llama-7b-hf"
)
model = LlamaForCausalLM.from_pretrained(
"tamdiep106/alpaca_lora_ja_en_emb-7b",
load_in_8bit=False,
device_map="auto",
torch_dtype=torch.float16
)
tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
Try this model
To try out this model, use this colab space GOOGLE COLAB LINK
Recommend Generation parameters:
temperature: 0.5~0.7
top p: 0.65~1.0
top k: 30~50
repeat penalty: 1.03~1.17
Japanese prompt:
instruction_input_JP = 'あなたはアシスタントです。以下に、タスクを説明する指示と、さらなるコンテキストを提供する入力を組み合わせます。 リクエストを適切に完了するレスポンスを作成します。'
instruction_no_input_JP = 'あなたはアシスタントです。以下はタスクを説明する指示です。 リクエストを適切に完了するレスポンスを作成します。'
prompt = """{}
### Instruction:
{}
### Response:"""
if input=='':
prompt = prompt.format(
instruction_no_input_JP, instruction
)
else:
prompt = prompt.format("{}\n\n### input:\n{}""").format(
instruction_input_JP, instruction, input
)
English prompt:
instruction_input_EN = 'You are an Assistant, below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.'
instruction_no_input_EN = 'You are an Assistant, below is an instruction that describes a task. Write a response that appropriately completes the request.'
prompt = """{}
### Instruction:
{}
### Response:"""
instruction = "write an email for my boss letting him know that i will resign from the position" #@param {type:"string"}
input = "" #@param {type:"string"}
if input=='':
prompt = prompt.format(
instruction_no_input_EN, instruction
)
else:
prompt = prompt.format("{}\n\n### input:\n{}""").format(
instruction_input_EN, instruction, input
)
Use this code to decode output of model
for s in generation_output.sequences:
result = tokenizer.decode(s).strip()
result = result.replace(prompt, '')
result = result.replace("<s>", "")
result = result.replace("</s>", "")
if result=='':
print('No output')
print(prompt)
print(result)
continue
print('\nResponse: ')
print(result)
Training:
Dataset:
Jumtra/oasst1_ja
Jumtra/jglue_jsquads_with_input
Jumtra/dolly_oast_jglue_ja
Aruno/guanaco_jp
yahma/alpaca-cleaned
databricks/databricks-dolly-15k
with about 750k entries, 2k entries used for evaluate process
Training setup
I trained this model on an instance from vast.ai
1 NVIDIA RTX 4090
90 GB Storage
Time spend about 3 and a half days
use
python export.py
to merge weightTraining script: https://github.com/Tamminhdiep97/alpaca-lora_finetune/tree/master
Result
- Training loss
- Eval loss chart
Acknowledgement
- Special thank to KBlueLeaf and the repo https://huggingface.co./KBlueLeaf/guanaco-7b-leh-v2 that helped and inspired me to train this model, without this help, i wouldn't never thought that i could finetune a llm myself
- Downloads last month
- 44
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.