|
import tensorflow as tf |
|
|
|
class CryptoBinaryClassifier(tf.keras.Model): |
|
def __init__(self, *args, **kwargs): |
|
super(CryptoBinaryClassifier, self).__init__() |
|
|
|
self.model = tf.keras.Sequential([ |
|
tf.keras.layers.Input(shape=(27,)), |
|
tf.keras.layers.Dense(64, activation='relu'), |
|
tf.keras.layers.Dense(32, activation='relu'), |
|
tf.keras.layers.Dense(1, activation='sigmoid') |
|
]) |
|
|
|
def call(self, inputs, training=False): |
|
return self.model(inputs) |
|
|
|
def __init__(self, *args, **kwargs): |
|
super(CryptoBinaryClassifier, self).__init__() |
|
|
|
self.load_weights('AVAXUSDT_x22.xlsx_binary_classification_model.h5') |
|
|
|
def predict(self, input_data): |
|
|
|
return self(input_data) |