File size: 900 Bytes
a32fc23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import tensorflow as tf
class CryptoBinaryClassifier(tf.keras.Model):
def __init__(self, *args, **kwargs):
super(CryptoBinaryClassifier, self).__init__()
# Define your model architecture here
self.model = tf.keras.Sequential([
tf.keras.layers.Input(shape=(27,)),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
def call(self, inputs, training=False):
return self.model(inputs)
def __init__(self, *args, **kwargs):
super(CryptoBinaryClassifier, self).__init__()
# Load your pre-trained weights
self.load_weights('AVAXUSDT_x22.xlsx_binary_classification_model.h5')
def predict(self, input_data):
# Preprocess input_data if necessary
return self(input_data) |