Uploaded model

  • Developed by: takeruh
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-2-9b

This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re


# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。
model_id = "unsloth/gemma-2-9b"
adapter_id = "takeruh/gemma-2-9b-it_lora"


HF_TOKEN = "" #@param {type:"string"}

# # unslothのFastLanguageModelで元のモデルをロード。
dtype = torch.bfloat16
load_in_4bit = False 


# モデルとトークナイザのロード
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

# タスクとなるデータの読み込み。
# 事前にデータをアップロードしてください。
datasets = []
# with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
with open("/workspace/elyza-tasks-100-TV_0.jsonl", "r") as f:

    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""



# # ガベージコレクターでメモリ解放
# gc.collect()
# del model
torch.cuda.empty_cache()
import gc

gc.collect()


# 学習したモデルを用いてタスクを実行
from tqdm import tqdm

# 推論するためにモデルのモードを変更
FastLanguageModel.for_inference(model)

# from tqdm import tqdm

batch_size = 8
# batch_size = 34
results = []
for i in tqdm(range(0, len(datasets), batch_size)):
    batch_data = datasets[i:i+batch_size]
    prompts = [f"### 指示\n{dt['input']}\n### 回答\n" for dt in batch_data]

    batch_inputs = tokenizer(
        prompts,
        return_tensors="pt",
        padding=True,
        truncation=True
    ).to(model.device)
    # https://huggingface.co./transformers/v2.9.1/main_classes/model.html
    batch_outputs = model.generate(
        **batch_inputs,
        max_new_tokens=350,
        use_cache=True,
        do_sample=False,
        # repetition_penalty=1.2
        repetition_penalty=1.5
    )

    for dt, output_ids in zip(batch_data, batch_outputs):
        prediction = tokenizer.decode(output_ids, skip_special_tokens=True).split('\n### 回答')[-1]
        result = {"task_id": dt["task_id"], "input": dt["input"], "output": prediction}
        results.append(result)
        # 個々の出力を表示したい場合
        tqdm.write(str(result))



# 結果をjsonlで保存。

# ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。
json_file_id = re.sub(".*/", "", adapter_id)
# /workspace/llm-jp-3-13b-finetune-outputs.jsonl
with open(f"/workspace/{json_file_id}_output2.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for takeruh/gemma-2-9b-it_lora

Base model

unsloth/gemma-2-9b
Finetuned
(26)
this model