metadata
language: ja
license: mit
datasets:
- wikipedia
nagisa_bert
A BERT model for nagisa. The model is available in Transformers π€.
A tokenizer for nagisa_bert is available here.
Install
To use this model, the following python library must be installed. You can install nagisa_bert by using the pip command.
Python 3.7+ on Linux or macOS is required.
$ pip install nagisa_bert
Usage
This model is available in Transformer's pipeline method.
>>> from transformers import pipeline
>>> from nagisa_bert import NagisaBertTokenizer
>>> text = "nagisaγ§[MASK]γ§γγγ’γγ«γ§γ"
>>> tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert")
>>> fill_mask = pipeline("fill-mask", model='taishi-i/nagisa_bert', tokenizer=tokenizer)
>>> print(fill_mask(text))
[{'score': 0.1385931372642517,
'sequence': 'nagisa γ§ δ½Ώη¨ γ§γγ γ’γγ« γ§γ',
'token': 8092,
'token_str': 'δ½Ώ η¨'},
{'score': 0.11947669088840485,
'sequence': 'nagisa γ§ ε©η¨ γ§γγ γ’γγ« γ§γ',
'token': 8252,
'token_str': 'ε© η¨'},
{'score': 0.04910655692219734,
'sequence': 'nagisa γ§ δ½ζ γ§γγ γ’γγ« γ§γ',
'token': 9559,
'token_str': 'δ½ ζ'},
{'score': 0.03792576864361763,
'sequence': 'nagisa γ§ θ³Όε
₯ γ§γγ γ’γγ« γ§γ',
'token': 9430,
'token_str': 'θ³Ό ε
₯'},
{'score': 0.026893319562077522,
'sequence': 'nagisa γ§ ε
₯ζ γ§γγ γ’γγ« γ§γ',
'token': 11273,
'token_str': 'ε
₯ ζ'}]
Tokenization and vectorization.
>>> from transformers import BertModel
>>> from nagisa_bert import NagisaBertTokenizer
>>> text = "nagisaγ§[MASK]γ§γγγ’γγ«γ§γ"
>>> tokenizer = NagisaBertTokenizer.from_pretrained("taishi-i/nagisa_bert")
>>> tokens = tokenizer.tokenize(text)
>>> print(tokens)
['na', '##g', '##is', '##a', 'γ§', '[MASK]', 'γ§γγ', 'γ’γγ«', 'γ§γ']
>>> model = BertModel.from_pretrained("taishi-i/nagisa_bert")
>>> h = model(**tokenizer(text, return_tensors="pt")).last_hidden_state
>>> print(h)
tensor([[[-0.2912, -0.6818, -0.4097, ..., 0.0262, -0.3845, 0.5816],
[ 0.2504, 0.2143, 0.5809, ..., -0.5428, 1.1805, 1.8701],
[ 0.1890, -0.5816, -0.5469, ..., -1.2081, -0.2341, 1.0215],
...,
[-0.4360, -0.2546, -0.2824, ..., 0.7420, -0.2904, 0.3070],
[-0.6598, -0.7607, 0.0034, ..., 0.2982, 0.5126, 1.1403],
[-0.2505, -0.6574, -0.0523, ..., 0.9082, 0.5851, 1.2625]]],
grad_fn=<NativeLayerNormBackward0>)