taishi-i's picture
update README.md
6c08a56
|
raw
history blame
2.16 kB
---
license: other
datasets:
- taishi-i/awesome-japanese-nlp-classification-dataset
language:
- en
- ja
metrics:
- f1
library_name: transformers
pipeline_tag: text-classification
---
# Model overview
This model is the baseline model for [awesome-japanese-nlp-classification-dataset](https://huggingface.co./datasets/taishi-i/awesome-japanese-nlp-classification-dataset). It was trained on this dataset, saved using the development data, and evaluated using the test data. The following table shows the evaluation results.
| Label | Precision | Recall | F1-Score | Support |
|--------------|-----------|--------|----------|---------|
| 0 | 0.98 | 0.99 | 0.98 | 796 |
| 1 | 0.79 | 0.70 | **0.74** | 60 |
| Accuracy | | | 0.97 | 856 |
| Macro Avg | 0.89 | 0.84 | 0.86 | 856 |
| Weighted Avg | 0.96 | 0.97 | 0.97 | 856 |
# Usage
Please install the following library.
```bash
pip install transformers
```
You can easily use a classification model with the pipeline method.
```python
from transformers import pipeline
pipe = pipeline(
"text-classification",
model="taishi-i/awesome-japanese-nlp-classification-model",
)
# Relevant sample
text = "ディープラーニングによる自然言語処理(共立出版)のサポートページです"
label = pipe(text)
print(label) # [{'label': '1', 'score': 0.9910495281219482}]
# Not Relevant sample
text = "AIイラストを管理するデスクトップアプリ"
label = pipe(text)
print(label) # [{'label': '0', 'score': 0.9986791014671326}]
```
# License
This model was trained from a dataset collected from the GitHub API under [GitHub Acceptable Use Policies - 7. Information Usage Restrictions](https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies#7-information-usage-restrictions) and [GitHub Terms of Service - H. API Terms](https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#h-api-terms). It should be used solely for research verification purposes. Adhering to GitHub's regulations is mandatory.