fine_tune_bert_output
This model is a fine-tuned version of bert-base-multilingual-cased on an wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.3320
- Overall Precision: 0.9051
- Overall Recall: 0.9121
- Overall F1: 0.9086
- Overall Accuracy: 0.9577
- Loc F1: 0.9190
- Org F1: 0.8663
- Per F1: 0.9367
Labels
The following table represents the labels used by the model along with their corresponding indices:
Index | Label |
---|---|
0 | O |
1 | B-PER |
2 | I-PER |
3 | B-ORG |
4 | I-ORG |
5 | B-LOC |
6 | I-LOC |
Label Descriptions
- O: Outside of a named entity.
- B-PER: Beginning of a person's name.
- I-PER: Inside a person's name.
- B-ORG: Beginning of an organization's name.
- I-ORG: Inside an organization's name.
- B-LOC: Beginning of a location name.
- I-LOC: Inside a location name.
Inference Example
from transformers import pipeline
# Load the model
ner_pipeline = pipeline("ner", model="syubraj/spanish_bert_based_ner")
# Example text
text = "Elon Musk vive en Estados Unidos y es dueño de Space X, Tesla y Starlink"
# Perform inference
entities = ner_pipeline(text)
for ent in entities:
print(f"Word: {ent['word']} | Label: {ent['entity']}")
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
---|---|---|---|---|---|---|---|---|---|---|
0.2713 | 0.8 | 1000 | 0.2236 | 0.8498 | 0.8672 | 0.8584 | 0.9401 | 0.8834 | 0.8019 | 0.8790 |
0.1537 | 1.6 | 2000 | 0.1909 | 0.8772 | 0.8943 | 0.8857 | 0.9495 | 0.9002 | 0.8369 | 0.9164 |
0.1152 | 2.4 | 3000 | 0.2095 | 0.8848 | 0.8981 | 0.8914 | 0.9523 | 0.9039 | 0.8432 | 0.9220 |
0.0889 | 3.2 | 4000 | 0.2223 | 0.8978 | 0.8998 | 0.8988 | 0.9546 | 0.9080 | 0.8569 | 0.9290 |
0.0701 | 4.0 | 5000 | 0.2152 | 0.8937 | 0.9042 | 0.8989 | 0.9544 | 0.9113 | 0.8565 | 0.9246 |
0.0457 | 4.8 | 6000 | 0.2365 | 0.9017 | 0.9069 | 0.9043 | 0.9563 | 0.9164 | 0.8616 | 0.9310 |
0.0364 | 5.6 | 7000 | 0.2622 | 0.9037 | 0.9086 | 0.9061 | 0.9578 | 0.9148 | 0.8639 | 0.9365 |
0.026 | 6.4 | 8000 | 0.2916 | 0.9037 | 0.9159 | 0.9097 | 0.9585 | 0.9183 | 0.8712 | 0.9366 |
0.0215 | 7.2 | 9000 | 0.2985 | 0.9022 | 0.9128 | 0.9074 | 0.9565 | 0.9178 | 0.8676 | 0.9323 |
0.0134 | 8.0 | 10000 | 0.3071 | 0.904 | 0.9131 | 0.9085 | 0.9574 | 0.9198 | 0.8671 | 0.9344 |
0.0091 | 8.8 | 11000 | 0.3335 | 0.9056 | 0.9115 | 0.9085 | 0.9573 | 0.9175 | 0.8670 | 0.9373 |
0.0074 | 9.6 | 12000 | 0.3320 | 0.9051 | 0.9121 | 0.9086 | 0.9577 | 0.9190 | 0.8663 | 0.9367 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for syubraj/spanish_bert_based_ner
Base model
google-bert/bert-base-multilingual-cased