|
--- |
|
base_model: google/mt5-small |
|
datasets: |
|
- syubraj/roman2nepali-transliteration |
|
language: |
|
- ne |
|
- en |
|
library_name: transformers |
|
license: apache-2.0 |
|
metrics: |
|
- bleu |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: romaneng2nep_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# romaneng2nep_v2 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on an [syubraj/roman2nepali-transliteration](https://huggingface.co./datasets/syubraj/roman2nepali-transliteration). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9652 |
|
- Gen Len: 5.1538 |
|
|
|
|
|
## MOdel Usage |
|
|
|
```python |
|
!pip install transformers |
|
``` |
|
|
|
```python |
|
from transformers import AutoTokenizer, MT5ForConditionalGeneration |
|
|
|
checkpoint = "syubraj/romaneng2nep_v3" |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
|
model = MT5ForConditionalGeneration.from_pretrained(checkpoint) |
|
|
|
# Set max sequence length |
|
max_seq_len = 20 |
|
|
|
def translate(text): |
|
# Tokenize the input text with a max length of 20 |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len) |
|
|
|
# Generate translation |
|
translated = model.generate(**inputs) |
|
|
|
# Decode the translated tokens back to text |
|
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) |
|
return translated_text |
|
|
|
# Example usage |
|
source_text = "muskuraudai" # Example Romanized Nepali text |
|
translated_text = translate(source_text) |
|
print(f"Translated Text: {translated_text}") |
|
``` |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Step | Training Loss | Validation Loss | Gen Len | |
|
|--------|---------------|-----------------|----------| |
|
| 1000 | 15.0703 | 5.6154 | 2.3840 | |
|
| 2000 | 6.0460 | 4.4449 | 4.6281 | |
|
| 3000 | 5.2580 | 3.9632 | 4.7790 | |
|
| 4000 | 4.8563 | 3.6188 | 5.0053 | |
|
| 5000 | 4.5602 | 3.3491 | 5.3085 | |
|
| 6000 | 4.3146 | 3.1572 | 5.2562 | |
|
| 7000 | 4.1228 | 3.0084 | 5.2197 | |
|
| 8000 | 3.9695 | 2.8727 | 5.2140 | |
|
| 9000 | 3.8342 | 2.7651 | 5.1834 | |
|
| 10000 | 3.7319 | 2.6661 | 5.1977 | |
|
| 11000 | 3.6485 | 2.5864 | 5.1536 | |
|
| 12000 | 3.5541 | 2.5080 | 5.1990 | |
|
| 13000 | 3.4959 | 2.4464 | 5.1775 | |
|
| 14000 | 3.4315 | 2.3931 | 5.1747 | |
|
| 15000 | 3.3663 | 2.3401 | 5.1625 | |
|
| 16000 | 3.3204 | 2.3034 | 5.1481 | |
|
| 17000 | 3.2417 | 2.2593 | 5.1663 | |
|
| 18000 | 3.2186 | 2.2283 | 5.1351 | |
|
| 19000 | 3.1822 | 2.1946 | 5.1573 | |
|
| 20000 | 3.1449 | 2.1690 | 5.1649 | |
|
| 21000 | 3.1067 | 2.1402 | 5.1624 | |
|
| 22000 | 3.0844 | 2.1258 | 5.1479 | |
|
| 23000 | 3.0574 | 2.1066 | 5.1518 | |
|
| 24000 | 3.0357 | 2.0887 | 5.1446 | |
|
| 25000 | 3.0136 | 2.0746 | 5.1559 | |
|
| 26000 | 2.9957 | 2.0609 | 5.1658 | |
|
| 27000 | 2.9865 | 2.0510 | 5.1791 | |
|
| 28000 | 2.9765 | 2.0456 | 5.1574 | |
|
| 29000 | 2.9675 | 2.0386 | 5.1620 | |
|
| 30000 | 2.9678 | 2.0344 | 5.1601 | |
|
| 31000 | 2.9652 | 2.0320 | 5.1538 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |
|
|
|
### Citation |
|
If you find this model useful, please site the work. |
|
|
|
``` |
|
@misc {yubraj_sigdel_2024, |
|
author = { {Yubraj Sigdel} }, |
|
title = { romaneng2nep_v3 (Revision dca017e) }, |
|
year = 2024, |
|
url = { https://huggingface.co./syubraj/romaneng2nep_v3 }, |
|
doi = { 10.57967/hf/3252 }, |
|
publisher = { Hugging Face } |
|
} |
|
``` |