|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: romaneng2nep_v2 |
|
results: [] |
|
datasets: |
|
- syubraj/roman2nepali-transliteration |
|
language: |
|
- ne |
|
- en |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# romaneng2nep_v2 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co./google/mt5-small) on an [syubraj/roman2nepali-transliteration](https://huggingface.co./datasets/syubraj/roman2nepali-transliteration). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.7225 |
|
- Gen Len: 5.2131 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Gen Len | |
|
|:-------------:|:------:|:-----:|:---------------:|:-------:| |
|
| 15.2574 | 0.0626 | 1000 | 5.7371 | 2.0266 | |
|
| 6.1453 | 0.1251 | 2000 | 4.5094 | 4.5514 | |
|
| 5.3182 | 0.1877 | 3000 | 4.0351 | 4.7656 | |
|
| 4.9218 | 0.2503 | 4000 | 3.6947 | 4.9841 | |
|
| 4.6397 | 0.3128 | 5000 | 3.4644 | 5.1216 | |
|
| 4.433 | 0.3754 | 6000 | 3.3009 | 5.2036 | |
|
| 4.2494 | 0.4380 | 7000 | 3.1525 | 5.1748 | |
|
| 4.1467 | 0.5005 | 8000 | 3.0482 | 5.232 | |
|
| 4.0272 | 0.5631 | 9000 | 2.9592 | 5.253 | |
|
| 3.9598 | 0.6257 | 10000 | 2.8917 | 5.1893 | |
|
| 3.9116 | 0.6882 | 11000 | 2.8292 | 5.2252 | |
|
| 3.8435 | 0.7508 | 12000 | 2.7871 | 5.2148 | |
|
| 3.8047 | 0.8134 | 13000 | 2.7574 | 5.2123 | |
|
| 3.7818 | 0.8759 | 14000 | 2.7338 | 5.2409 | |
|
| 3.7764 | 0.9385 | 15000 | 2.7225 | 5.2131 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |