|
--- |
|
library_name: transformers |
|
language: |
|
- ne |
|
metrics: |
|
- cer |
|
pipeline_tag: image-to-text |
|
--- |
|
## Devanagari OCR with TrOCR |
|
|
|
This model is a Devanagari Optical Character Recognition (OCR) model based on VisionEncoderDecoder architecture, fine-tuned on Nepali/Devanagari script. The model uses the `TrOCRProcessor` from Hugging Face to process and generate text from images. |
|
|
|
### Model Details |
|
|
|
- **Model:** `syubraj/TrOCR_Nepali` |
|
- **Processor:** TrOCRProcessor combining a Vision Transformer (ViT) feature extractor and a tokenizer. |
|
|
|
### How to Use |
|
|
|
You can use this model in Python with the following steps: |
|
|
|
```python |
|
from transformers import VisionEncoderDecoderModel, TrOCRProcessor, AutoTokenizer |
|
from PIL import Image |
|
import torch |
|
|
|
# Load the model and processor |
|
tokenizer = AutoTokenizer.from_pretrained("syubraj/TrOCR_Nepali") |
|
model = VisionEncoderDecoderModel.from_pretrained("syubraj/TrOCR_Nepali") |
|
processor = TrOCRProcessor.from_pretrained("syubraj/TrOCR_Nepali") |
|
|
|
# Load image |
|
image = Image.open("path_to_image").convert("RGB") |
|
|
|
# Preprocess image |
|
pixel_values = processor(image, return_tensors="pt").pixel_values |
|
|
|
# Generate text |
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
print(generated_text) |
|
``` |