pretrain

This model is a fine-tuned version of Qwen/Qwen2.5-32B on the openreview dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.2155 0.1604 100 1.2046
1.1392 0.3209 200 1.1238
1.1181 0.4813 300 1.1140
1.1252 0.6418 400 1.1097
1.1199 0.8022 500 1.1079
1.1104 0.9627 600 1.1075

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
13
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for sumuks/pretrain

Base model

Qwen/Qwen2.5-32B
Adapter
(2)
this model