|
import torch
|
|
import torch.nn as nn
|
|
|
|
|
|
class LSTMRegressor(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, dropout, output_size=1):
|
|
super(LSTMRegressor, self).__init__()
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size, output_size)
|
|
|
|
def forward(self, x):
|
|
h_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device)
|
|
c_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device)
|
|
|
|
out, _ = self.lstm(x, (h_0, c_0))
|
|
out = self.fc(out[:, -1, :])
|
|
return out
|
|
|
|
|
|
class LSTMRegressorB(nn.Module):
|
|
def __init__(self, input_size, hidden_size, dropout, sequence_length):
|
|
super(LSTMRegressorB, self).__init__()
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, dropout=dropout, batch_first=True)
|
|
fc_list = [nn.Linear(input_size * sequence_length, input_size * sequence_length),
|
|
nn.Linear(hidden_size * sequence_length, 1)]
|
|
self.fc = nn.Sequential(*fc_list)
|
|
|
|
def forward(self, x):
|
|
h_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device)
|
|
c_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device)
|
|
|
|
out, _ = self.lstm(x, (h_0, c_0))
|
|
out = out.reshape(out.size(0), -1)
|
|
out = self.fc(out)
|
|
return out
|
|
|
|
|
|
class GRURegressor(nn.Module):
|
|
def __init__(self, input_size, hidden_size, num_layers, dropout, output_size=1):
|
|
super(GRURegressor, self).__init__()
|
|
self.gru = nn.GRU(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True)
|
|
self.fc = nn.Linear(hidden_size, output_size)
|
|
|
|
def forward(self, x):
|
|
h_0 = torch.zeros(self.gru.num_layers, x.size(0), self.gru.hidden_size).to(x.device)
|
|
|
|
out, _ = self.gru(x, h_0)
|
|
out = self.fc(out[:, -1, :])
|
|
return out
|
|
|