import torch import torch.nn as nn class LSTMRegressor(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout, output_size=1): super(LSTMRegressor, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) c_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) out, _ = self.lstm(x, (h_0, c_0)) out = self.fc(out[:, -1, :]) return out class LSTMRegressorB(nn.Module): def __init__(self, input_size, hidden_size, dropout, sequence_length): super(LSTMRegressorB, self).__init__() self.lstm = nn.LSTM(input_size, hidden_size, num_layers=2, dropout=dropout, batch_first=True) fc_list = [nn.Linear(input_size * sequence_length, input_size * sequence_length), nn.Linear(hidden_size * sequence_length, 1)] self.fc = nn.Sequential(*fc_list) def forward(self, x): h_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) c_0 = torch.zeros(self.lstm.num_layers, x.size(0), self.lstm.hidden_size).to(x.device) out, _ = self.lstm(x, (h_0, c_0)) out = out.reshape(out.size(0), -1) out = self.fc(out) return out class GRURegressor(nn.Module): def __init__(self, input_size, hidden_size, num_layers, dropout, output_size=1): super(GRURegressor, self).__init__() self.gru = nn.GRU(input_size, hidden_size, num_layers, dropout=dropout, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x): h_0 = torch.zeros(self.gru.num_layers, x.size(0), self.gru.hidden_size).to(x.device) out, _ = self.gru(x, h_0) out = self.fc(out[:, -1, :]) return out