|
--- |
|
library_name: transformers |
|
tags: |
|
- unsloth |
|
license: apache-2.0 |
|
datasets: |
|
- turkish-nlp-suite/InstrucTurca |
|
language: |
|
- tr |
|
pipeline_tag: text-generation |
|
base_model: |
|
- unsloth/Meta-Llama-3.1-8B |
|
--- |
|
|
|
This is a Turkish finetuned Llama-3.1-8B model using InstrucTurca dataset in order to increase the Turkish capability of modern LLMs. |
|
|
|
Note: These are only LoRA adapters. You should also import the base model itself. |
|
|
|
Example usage: |
|
|
|
```py |
|
model_name = "unsloth/Meta-Llama-3.1-8B" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) |
|
model.gradient_checkpointing_enable() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
adapter_path = "suayptalha/Llama-3.1-8b-Turkish-Finetuned" |
|
model = PeftModel.from_pretrained(model, adapter_path) |
|
|
|
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Input: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"", #Your question here |
|
"", #Given input here |
|
"", #Output (for training) |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True) |
|
tokenizer.batch_decode(outputs) |
|
``` |