suarkadipa/GPT-2-finetuned-papers
This model is a fine-tuned version of distilgpt2 on an CShorten/ML-ArXiv-Papers dataset. Based on https://python.plainenglish.io/i-fine-tuned-gpt-2-on-100k-scientific-papers-heres-the-result-903f0784fe65 It achieves the following results on the evaluation set:
- Train Loss: 2.4225
- Validation Loss: 2.2164
- Epoch: 0
Model description
More information needed
Intended uses & limitations
How to run in Google Colab
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer_fromhub = AutoTokenizer.from_pretrained("suarkadipa/GPT-2-finetuned-papers")
model_fromhub = AutoModelForCausalLM.from_pretrained("suarkadipa/GPT-2-finetuned-papers", from_tf=True)
text_generator = pipeline(
"text-generation",
model=model_fromhub,
tokenizer=tokenizer_fromhub,
framework="tf",
max_new_tokens=3000
)
// change with your text
test_sentence = "the role of recommender systems"
res=text_generator(test_sentence)[0]["generated_text"].replace("\n", " ")
res
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
2.4225 | 2.2164 | 0 |
Framework versions
- Transformers 4.28.1
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for suarkadipa/GPT-2-finetuned-papers
Base model
distilbert/distilgpt2