CNEC_2_0_ext_robeczech-base

This model is a fine-tuned version of ufal/robeczech-base on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1663
  • Precision: 0.8633
  • Recall: 0.8933
  • F1: 0.8780
  • Accuracy: 0.9703

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2593 4.46 1000 0.1653 0.8195 0.8223 0.8209 0.9593
0.1209 8.93 2000 0.1355 0.8441 0.8789 0.8612 0.9679
0.0763 13.39 3000 0.1310 0.8591 0.8893 0.8739 0.9709
0.0539 17.86 4000 0.1383 0.8656 0.8953 0.8802 0.9719
0.0403 22.32 5000 0.1392 0.8626 0.8943 0.8782 0.9710
0.0316 26.79 6000 0.1539 0.8606 0.8948 0.8774 0.9712
0.0254 31.25 7000 0.1552 0.8660 0.8913 0.8785 0.9706
0.0211 35.71 8000 0.1621 0.8658 0.8968 0.8810 0.9701
0.0183 40.18 9000 0.1593 0.8688 0.8973 0.8828 0.9718
0.0161 44.64 10000 0.1638 0.8653 0.8993 0.8820 0.9714
0.015 49.11 11000 0.1663 0.8633 0.8933 0.8780 0.9703

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
14
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC_2_0_ext_robeczech-base

Finetuned
(6)
this model

Evaluation results