CNEC_2_0_Supertypes_Czert-B-base-cased

This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2429
  • Precision: 0.8320
  • Recall: 0.8860
  • F1: 0.8582
  • Accuracy: 0.9590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 113 0.2231 0.7053 0.7472 0.7256 0.9363
No log 2.0 226 0.1791 0.7584 0.8170 0.7866 0.9490
No log 3.0 339 0.1746 0.7742 0.8385 0.8051 0.9508
No log 4.0 452 0.1783 0.7836 0.8509 0.8158 0.9512
0.2584 5.0 565 0.1742 0.7902 0.8558 0.8217 0.9541
0.2584 6.0 678 0.1653 0.8044 0.8645 0.8334 0.9565
0.2584 7.0 791 0.1694 0.8103 0.8715 0.8398 0.9579
0.2584 8.0 904 0.1838 0.8001 0.8678 0.8326 0.9556
0.0804 9.0 1017 0.1804 0.8204 0.8753 0.8469 0.9571
0.0804 10.0 1130 0.1918 0.8196 0.8761 0.8469 0.9576
0.0804 11.0 1243 0.2018 0.8169 0.8790 0.8468 0.9578
0.0804 12.0 1356 0.2067 0.8220 0.8815 0.8507 0.9579
0.0804 13.0 1469 0.2060 0.8285 0.8876 0.8570 0.9585
0.049 14.0 1582 0.2084 0.8271 0.8815 0.8534 0.9589
0.049 15.0 1695 0.2171 0.8257 0.8806 0.8523 0.9585
0.049 16.0 1808 0.2246 0.8307 0.8839 0.8565 0.9586
0.049 17.0 1921 0.2225 0.8288 0.8881 0.8574 0.9590
0.0338 18.0 2034 0.2272 0.8351 0.8889 0.8611 0.9598
0.0338 19.0 2147 0.2307 0.8337 0.8864 0.8593 0.9593
0.0338 20.0 2260 0.2387 0.8302 0.8864 0.8574 0.9588
0.0338 21.0 2373 0.2387 0.8338 0.8868 0.8595 0.9585
0.0338 22.0 2486 0.2400 0.8343 0.8881 0.8603 0.9592
0.0261 23.0 2599 0.2422 0.8319 0.8872 0.8587 0.9590
0.0261 24.0 2712 0.2431 0.8317 0.8860 0.858 0.9589
0.0261 25.0 2825 0.2429 0.8320 0.8860 0.8582 0.9590

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC_2_0_Supertypes_Czert-B-base-cased

Finetuned
(7)
this model

Evaluation results