stulcrad's picture
Model save
68fe01a verified
|
raw
history blame
2.7 kB
metadata
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
  - generated_from_trainer
datasets:
  - cnec
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: CNEC_1_1_robeczech-base
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cnec
          type: cnec
          config: default
          split: validation
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.8579982891360137
          - name: Recall
            type: recall
            value: 0.8856512141280353
          - name: F1
            type: f1
            value: 0.8716054746904193
          - name: Accuracy
            type: accuracy
            value: 0.9511284046692607

CNEC_1_1_robeczech-base

This model is a fine-tuned version of ufal/robeczech-base on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3233
  • Precision: 0.8580
  • Recall: 0.8857
  • F1: 0.8716
  • Accuracy: 0.9511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3724 3.41 2000 0.3332 0.7990 0.8230 0.8108 0.9376
0.1863 6.81 4000 0.2656 0.8515 0.8636 0.8575 0.9455
0.1109 10.22 6000 0.2575 0.8505 0.8737 0.8619 0.9493
0.068 13.63 8000 0.2804 0.8567 0.8790 0.8677 0.9503
0.0466 17.04 10000 0.2952 0.8573 0.8830 0.8699 0.9498
0.0305 20.44 12000 0.2992 0.8618 0.8865 0.8740 0.9520
0.0231 23.85 14000 0.3272 0.8567 0.8843 0.8703 0.9512
0.02 27.26 16000 0.3233 0.8580 0.8857 0.8716 0.9511

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0