File size: 36,866 Bytes
a2fc0a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
2023-10-23 19:16:53,810 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,811 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Train:  966 sentences
2023-10-23 19:16:53,812         (train_with_dev=False, train_with_test=False)
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Training Params:
2023-10-23 19:16:53,812  - learning_rate: "5e-05" 
2023-10-23 19:16:53,812  - mini_batch_size: "8"
2023-10-23 19:16:53,812  - max_epochs: "10"
2023-10-23 19:16:53,812  - shuffle: "True"
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Plugins:
2023-10-23 19:16:53,812  - TensorboardLogger
2023-10-23 19:16:53,812  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 19:16:53,812  - metric: "('micro avg', 'f1-score')"
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Computation:
2023-10-23 19:16:53,812  - compute on device: cuda:0
2023-10-23 19:16:53,812  - embedding storage: none
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
2023-10-23 19:16:53,813 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 19:16:54,860 epoch 1 - iter 12/121 - loss 3.70276262 - time (sec): 1.05 - samples/sec: 2270.31 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:16:55,939 epoch 1 - iter 24/121 - loss 2.94388750 - time (sec): 2.13 - samples/sec: 2170.37 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:16:56,993 epoch 1 - iter 36/121 - loss 2.14431472 - time (sec): 3.18 - samples/sec: 2245.23 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:16:58,101 epoch 1 - iter 48/121 - loss 1.72480650 - time (sec): 4.29 - samples/sec: 2348.26 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:16:59,086 epoch 1 - iter 60/121 - loss 1.52035465 - time (sec): 5.27 - samples/sec: 2303.07 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:17:00,187 epoch 1 - iter 72/121 - loss 1.33210475 - time (sec): 6.37 - samples/sec: 2294.42 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:17:01,246 epoch 1 - iter 84/121 - loss 1.20099635 - time (sec): 7.43 - samples/sec: 2280.42 - lr: 0.000034 - momentum: 0.000000
2023-10-23 19:17:02,345 epoch 1 - iter 96/121 - loss 1.07387613 - time (sec): 8.53 - samples/sec: 2299.86 - lr: 0.000039 - momentum: 0.000000
2023-10-23 19:17:03,427 epoch 1 - iter 108/121 - loss 0.98002301 - time (sec): 9.61 - samples/sec: 2296.51 - lr: 0.000044 - momentum: 0.000000
2023-10-23 19:17:04,469 epoch 1 - iter 120/121 - loss 0.90647831 - time (sec): 10.66 - samples/sec: 2302.02 - lr: 0.000049 - momentum: 0.000000
2023-10-23 19:17:04,543 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:04,544 EPOCH 1 done: loss 0.8991 - lr: 0.000049
2023-10-23 19:17:05,376 DEV : loss 0.18442463874816895 - f1-score (micro avg)  0.6868
2023-10-23 19:17:05,381 saving best model
2023-10-23 19:17:05,868 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:06,928 epoch 2 - iter 12/121 - loss 0.15705501 - time (sec): 1.06 - samples/sec: 2168.99 - lr: 0.000049 - momentum: 0.000000
2023-10-23 19:17:08,035 epoch 2 - iter 24/121 - loss 0.13657685 - time (sec): 2.17 - samples/sec: 2214.74 - lr: 0.000049 - momentum: 0.000000
2023-10-23 19:17:09,109 epoch 2 - iter 36/121 - loss 0.14488585 - time (sec): 3.24 - samples/sec: 2260.59 - lr: 0.000048 - momentum: 0.000000
2023-10-23 19:17:10,171 epoch 2 - iter 48/121 - loss 0.15283456 - time (sec): 4.30 - samples/sec: 2183.19 - lr: 0.000048 - momentum: 0.000000
2023-10-23 19:17:11,332 epoch 2 - iter 60/121 - loss 0.15273878 - time (sec): 5.46 - samples/sec: 2225.64 - lr: 0.000047 - momentum: 0.000000
2023-10-23 19:17:12,301 epoch 2 - iter 72/121 - loss 0.15603911 - time (sec): 6.43 - samples/sec: 2222.49 - lr: 0.000047 - momentum: 0.000000
2023-10-23 19:17:13,332 epoch 2 - iter 84/121 - loss 0.15252101 - time (sec): 7.46 - samples/sec: 2261.11 - lr: 0.000046 - momentum: 0.000000
2023-10-23 19:17:14,480 epoch 2 - iter 96/121 - loss 0.15153949 - time (sec): 8.61 - samples/sec: 2281.76 - lr: 0.000046 - momentum: 0.000000
2023-10-23 19:17:15,522 epoch 2 - iter 108/121 - loss 0.14821059 - time (sec): 9.65 - samples/sec: 2278.10 - lr: 0.000045 - momentum: 0.000000
2023-10-23 19:17:16,625 epoch 2 - iter 120/121 - loss 0.14288083 - time (sec): 10.76 - samples/sec: 2287.83 - lr: 0.000045 - momentum: 0.000000
2023-10-23 19:17:16,696 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:16,697 EPOCH 2 done: loss 0.1424 - lr: 0.000045
2023-10-23 19:17:17,402 DEV : loss 0.11657055467367172 - f1-score (micro avg)  0.7735
2023-10-23 19:17:17,406 saving best model
2023-10-23 19:17:18,089 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:19,070 epoch 3 - iter 12/121 - loss 0.08238361 - time (sec): 0.98 - samples/sec: 2252.66 - lr: 0.000044 - momentum: 0.000000
2023-10-23 19:17:20,133 epoch 3 - iter 24/121 - loss 0.08198313 - time (sec): 2.04 - samples/sec: 2274.97 - lr: 0.000043 - momentum: 0.000000
2023-10-23 19:17:21,336 epoch 3 - iter 36/121 - loss 0.09209441 - time (sec): 3.25 - samples/sec: 2217.70 - lr: 0.000043 - momentum: 0.000000
2023-10-23 19:17:22,436 epoch 3 - iter 48/121 - loss 0.09095958 - time (sec): 4.35 - samples/sec: 2210.50 - lr: 0.000042 - momentum: 0.000000
2023-10-23 19:17:23,484 epoch 3 - iter 60/121 - loss 0.09157820 - time (sec): 5.39 - samples/sec: 2235.27 - lr: 0.000042 - momentum: 0.000000
2023-10-23 19:17:24,578 epoch 3 - iter 72/121 - loss 0.08770180 - time (sec): 6.49 - samples/sec: 2251.10 - lr: 0.000041 - momentum: 0.000000
2023-10-23 19:17:25,710 epoch 3 - iter 84/121 - loss 0.08228471 - time (sec): 7.62 - samples/sec: 2227.99 - lr: 0.000041 - momentum: 0.000000
2023-10-23 19:17:26,830 epoch 3 - iter 96/121 - loss 0.08072554 - time (sec): 8.74 - samples/sec: 2258.26 - lr: 0.000040 - momentum: 0.000000
2023-10-23 19:17:27,828 epoch 3 - iter 108/121 - loss 0.08348649 - time (sec): 9.74 - samples/sec: 2269.70 - lr: 0.000040 - momentum: 0.000000
2023-10-23 19:17:28,958 epoch 3 - iter 120/121 - loss 0.08324832 - time (sec): 10.87 - samples/sec: 2262.21 - lr: 0.000039 - momentum: 0.000000
2023-10-23 19:17:29,035 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:29,036 EPOCH 3 done: loss 0.0828 - lr: 0.000039
2023-10-23 19:17:29,746 DEV : loss 0.12160609662532806 - f1-score (micro avg)  0.8191
2023-10-23 19:17:29,750 saving best model
2023-10-23 19:17:30,362 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:31,428 epoch 4 - iter 12/121 - loss 0.04546451 - time (sec): 1.06 - samples/sec: 2196.28 - lr: 0.000038 - momentum: 0.000000
2023-10-23 19:17:32,597 epoch 4 - iter 24/121 - loss 0.06098250 - time (sec): 2.23 - samples/sec: 2185.14 - lr: 0.000038 - momentum: 0.000000
2023-10-23 19:17:33,672 epoch 4 - iter 36/121 - loss 0.05602913 - time (sec): 3.31 - samples/sec: 2214.07 - lr: 0.000037 - momentum: 0.000000
2023-10-23 19:17:34,748 epoch 4 - iter 48/121 - loss 0.05772828 - time (sec): 4.39 - samples/sec: 2250.27 - lr: 0.000037 - momentum: 0.000000
2023-10-23 19:17:35,830 epoch 4 - iter 60/121 - loss 0.05350712 - time (sec): 5.47 - samples/sec: 2300.81 - lr: 0.000036 - momentum: 0.000000
2023-10-23 19:17:36,946 epoch 4 - iter 72/121 - loss 0.05555258 - time (sec): 6.58 - samples/sec: 2314.94 - lr: 0.000036 - momentum: 0.000000
2023-10-23 19:17:37,930 epoch 4 - iter 84/121 - loss 0.05687203 - time (sec): 7.57 - samples/sec: 2300.44 - lr: 0.000035 - momentum: 0.000000
2023-10-23 19:17:38,978 epoch 4 - iter 96/121 - loss 0.05775887 - time (sec): 8.61 - samples/sec: 2296.05 - lr: 0.000035 - momentum: 0.000000
2023-10-23 19:17:40,075 epoch 4 - iter 108/121 - loss 0.05928323 - time (sec): 9.71 - samples/sec: 2297.60 - lr: 0.000034 - momentum: 0.000000
2023-10-23 19:17:41,104 epoch 4 - iter 120/121 - loss 0.05753039 - time (sec): 10.74 - samples/sec: 2297.05 - lr: 0.000034 - momentum: 0.000000
2023-10-23 19:17:41,170 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:41,170 EPOCH 4 done: loss 0.0574 - lr: 0.000034
2023-10-23 19:17:41,877 DEV : loss 0.13370861113071442 - f1-score (micro avg)  0.846
2023-10-23 19:17:41,881 saving best model
2023-10-23 19:17:42,498 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:43,607 epoch 5 - iter 12/121 - loss 0.03795536 - time (sec): 1.11 - samples/sec: 2037.39 - lr: 0.000033 - momentum: 0.000000
2023-10-23 19:17:44,666 epoch 5 - iter 24/121 - loss 0.04199710 - time (sec): 2.17 - samples/sec: 2151.57 - lr: 0.000032 - momentum: 0.000000
2023-10-23 19:17:45,727 epoch 5 - iter 36/121 - loss 0.04063135 - time (sec): 3.23 - samples/sec: 2183.68 - lr: 0.000032 - momentum: 0.000000
2023-10-23 19:17:46,828 epoch 5 - iter 48/121 - loss 0.04131379 - time (sec): 4.33 - samples/sec: 2223.47 - lr: 0.000031 - momentum: 0.000000
2023-10-23 19:17:48,013 epoch 5 - iter 60/121 - loss 0.04224433 - time (sec): 5.51 - samples/sec: 2249.93 - lr: 0.000031 - momentum: 0.000000
2023-10-23 19:17:49,089 epoch 5 - iter 72/121 - loss 0.04511043 - time (sec): 6.59 - samples/sec: 2245.11 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:17:50,147 epoch 5 - iter 84/121 - loss 0.04148152 - time (sec): 7.65 - samples/sec: 2261.72 - lr: 0.000030 - momentum: 0.000000
2023-10-23 19:17:51,189 epoch 5 - iter 96/121 - loss 0.04159397 - time (sec): 8.69 - samples/sec: 2256.58 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:17:52,225 epoch 5 - iter 108/121 - loss 0.04023066 - time (sec): 9.73 - samples/sec: 2262.81 - lr: 0.000029 - momentum: 0.000000
2023-10-23 19:17:53,290 epoch 5 - iter 120/121 - loss 0.03970280 - time (sec): 10.79 - samples/sec: 2270.68 - lr: 0.000028 - momentum: 0.000000
2023-10-23 19:17:53,378 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:53,378 EPOCH 5 done: loss 0.0399 - lr: 0.000028
2023-10-23 19:17:54,086 DEV : loss 0.15133920311927795 - f1-score (micro avg)  0.8446
2023-10-23 19:17:54,091 ----------------------------------------------------------------------------------------------------
2023-10-23 19:17:55,186 epoch 6 - iter 12/121 - loss 0.02447443 - time (sec): 1.09 - samples/sec: 2281.68 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:17:56,257 epoch 6 - iter 24/121 - loss 0.02866063 - time (sec): 2.16 - samples/sec: 2292.94 - lr: 0.000027 - momentum: 0.000000
2023-10-23 19:17:57,361 epoch 6 - iter 36/121 - loss 0.02466423 - time (sec): 3.27 - samples/sec: 2227.08 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:17:58,323 epoch 6 - iter 48/121 - loss 0.02453619 - time (sec): 4.23 - samples/sec: 2253.25 - lr: 0.000026 - momentum: 0.000000
2023-10-23 19:17:59,502 epoch 6 - iter 60/121 - loss 0.02414396 - time (sec): 5.41 - samples/sec: 2276.41 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:18:00,637 epoch 6 - iter 72/121 - loss 0.02532751 - time (sec): 6.55 - samples/sec: 2254.28 - lr: 0.000025 - momentum: 0.000000
2023-10-23 19:18:01,786 epoch 6 - iter 84/121 - loss 0.02501141 - time (sec): 7.69 - samples/sec: 2216.56 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:18:02,857 epoch 6 - iter 96/121 - loss 0.02620381 - time (sec): 8.77 - samples/sec: 2237.47 - lr: 0.000024 - momentum: 0.000000
2023-10-23 19:18:03,974 epoch 6 - iter 108/121 - loss 0.02653234 - time (sec): 9.88 - samples/sec: 2223.71 - lr: 0.000023 - momentum: 0.000000
2023-10-23 19:18:05,062 epoch 6 - iter 120/121 - loss 0.02794705 - time (sec): 10.97 - samples/sec: 2239.31 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:18:05,131 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:05,132 EPOCH 6 done: loss 0.0279 - lr: 0.000022
2023-10-23 19:18:05,992 DEV : loss 0.14656664431095123 - f1-score (micro avg)  0.8522
2023-10-23 19:18:05,996 saving best model
2023-10-23 19:18:06,638 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:07,720 epoch 7 - iter 12/121 - loss 0.01613967 - time (sec): 1.08 - samples/sec: 2476.21 - lr: 0.000022 - momentum: 0.000000
2023-10-23 19:18:08,819 epoch 7 - iter 24/121 - loss 0.01984545 - time (sec): 2.18 - samples/sec: 2331.63 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:18:09,900 epoch 7 - iter 36/121 - loss 0.01834316 - time (sec): 3.26 - samples/sec: 2305.23 - lr: 0.000021 - momentum: 0.000000
2023-10-23 19:18:10,999 epoch 7 - iter 48/121 - loss 0.01661789 - time (sec): 4.36 - samples/sec: 2300.87 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:18:12,044 epoch 7 - iter 60/121 - loss 0.01760996 - time (sec): 5.40 - samples/sec: 2298.50 - lr: 0.000020 - momentum: 0.000000
2023-10-23 19:18:13,220 epoch 7 - iter 72/121 - loss 0.01879381 - time (sec): 6.58 - samples/sec: 2251.54 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:18:14,262 epoch 7 - iter 84/121 - loss 0.01780585 - time (sec): 7.62 - samples/sec: 2270.88 - lr: 0.000019 - momentum: 0.000000
2023-10-23 19:18:15,353 epoch 7 - iter 96/121 - loss 0.01714403 - time (sec): 8.71 - samples/sec: 2268.93 - lr: 0.000018 - momentum: 0.000000
2023-10-23 19:18:16,368 epoch 7 - iter 108/121 - loss 0.01812978 - time (sec): 9.73 - samples/sec: 2274.32 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:18:17,435 epoch 7 - iter 120/121 - loss 0.01793965 - time (sec): 10.80 - samples/sec: 2274.95 - lr: 0.000017 - momentum: 0.000000
2023-10-23 19:18:17,503 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:17,504 EPOCH 7 done: loss 0.0193 - lr: 0.000017
2023-10-23 19:18:18,201 DEV : loss 0.18479269742965698 - f1-score (micro avg)  0.8539
2023-10-23 19:18:18,205 saving best model
2023-10-23 19:18:18,809 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:19,886 epoch 8 - iter 12/121 - loss 0.01658824 - time (sec): 1.08 - samples/sec: 2310.61 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:18:20,994 epoch 8 - iter 24/121 - loss 0.01445413 - time (sec): 2.18 - samples/sec: 2277.77 - lr: 0.000016 - momentum: 0.000000
2023-10-23 19:18:22,068 epoch 8 - iter 36/121 - loss 0.01111450 - time (sec): 3.26 - samples/sec: 2253.49 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:18:23,079 epoch 8 - iter 48/121 - loss 0.01111916 - time (sec): 4.27 - samples/sec: 2282.85 - lr: 0.000015 - momentum: 0.000000
2023-10-23 19:18:24,085 epoch 8 - iter 60/121 - loss 0.01083118 - time (sec): 5.27 - samples/sec: 2267.00 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:18:25,103 epoch 8 - iter 72/121 - loss 0.01159512 - time (sec): 6.29 - samples/sec: 2296.82 - lr: 0.000014 - momentum: 0.000000
2023-10-23 19:18:26,208 epoch 8 - iter 84/121 - loss 0.01313584 - time (sec): 7.40 - samples/sec: 2297.06 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:18:27,351 epoch 8 - iter 96/121 - loss 0.01196163 - time (sec): 8.54 - samples/sec: 2317.34 - lr: 0.000013 - momentum: 0.000000
2023-10-23 19:18:28,377 epoch 8 - iter 108/121 - loss 0.01122020 - time (sec): 9.57 - samples/sec: 2325.53 - lr: 0.000012 - momentum: 0.000000
2023-10-23 19:18:29,426 epoch 8 - iter 120/121 - loss 0.01269033 - time (sec): 10.62 - samples/sec: 2306.08 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:18:29,541 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:29,541 EPOCH 8 done: loss 0.0126 - lr: 0.000011
2023-10-23 19:18:30,241 DEV : loss 0.19710467755794525 - f1-score (micro avg)  0.8424
2023-10-23 19:18:30,245 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:31,235 epoch 9 - iter 12/121 - loss 0.01794818 - time (sec): 0.99 - samples/sec: 2435.01 - lr: 0.000011 - momentum: 0.000000
2023-10-23 19:18:32,276 epoch 9 - iter 24/121 - loss 0.01251622 - time (sec): 2.03 - samples/sec: 2419.60 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:18:33,383 epoch 9 - iter 36/121 - loss 0.00847168 - time (sec): 3.14 - samples/sec: 2357.98 - lr: 0.000010 - momentum: 0.000000
2023-10-23 19:18:34,465 epoch 9 - iter 48/121 - loss 0.00852648 - time (sec): 4.22 - samples/sec: 2390.40 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:18:35,515 epoch 9 - iter 60/121 - loss 0.01017054 - time (sec): 5.27 - samples/sec: 2364.10 - lr: 0.000009 - momentum: 0.000000
2023-10-23 19:18:36,635 epoch 9 - iter 72/121 - loss 0.00894353 - time (sec): 6.39 - samples/sec: 2360.02 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:18:37,664 epoch 9 - iter 84/121 - loss 0.00789992 - time (sec): 7.42 - samples/sec: 2350.40 - lr: 0.000008 - momentum: 0.000000
2023-10-23 19:18:38,698 epoch 9 - iter 96/121 - loss 0.00788349 - time (sec): 8.45 - samples/sec: 2357.86 - lr: 0.000007 - momentum: 0.000000
2023-10-23 19:18:39,793 epoch 9 - iter 108/121 - loss 0.00834119 - time (sec): 9.55 - samples/sec: 2314.69 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:18:40,873 epoch 9 - iter 120/121 - loss 0.00822010 - time (sec): 10.63 - samples/sec: 2318.95 - lr: 0.000006 - momentum: 0.000000
2023-10-23 19:18:40,946 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:40,947 EPOCH 9 done: loss 0.0082 - lr: 0.000006
2023-10-23 19:18:41,647 DEV : loss 0.2059398740530014 - f1-score (micro avg)  0.8354
2023-10-23 19:18:41,651 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:42,828 epoch 10 - iter 12/121 - loss 0.00397773 - time (sec): 1.18 - samples/sec: 2221.89 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:18:43,931 epoch 10 - iter 24/121 - loss 0.00493849 - time (sec): 2.28 - samples/sec: 2261.14 - lr: 0.000005 - momentum: 0.000000
2023-10-23 19:18:44,978 epoch 10 - iter 36/121 - loss 0.00334518 - time (sec): 3.33 - samples/sec: 2351.77 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:18:46,067 epoch 10 - iter 48/121 - loss 0.00273462 - time (sec): 4.42 - samples/sec: 2344.85 - lr: 0.000004 - momentum: 0.000000
2023-10-23 19:18:47,158 epoch 10 - iter 60/121 - loss 0.00482458 - time (sec): 5.51 - samples/sec: 2334.56 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:18:48,231 epoch 10 - iter 72/121 - loss 0.00411537 - time (sec): 6.58 - samples/sec: 2316.05 - lr: 0.000003 - momentum: 0.000000
2023-10-23 19:18:49,216 epoch 10 - iter 84/121 - loss 0.00517085 - time (sec): 7.56 - samples/sec: 2302.06 - lr: 0.000002 - momentum: 0.000000
2023-10-23 19:18:50,215 epoch 10 - iter 96/121 - loss 0.00461560 - time (sec): 8.56 - samples/sec: 2316.71 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:18:51,284 epoch 10 - iter 108/121 - loss 0.00542344 - time (sec): 9.63 - samples/sec: 2319.31 - lr: 0.000001 - momentum: 0.000000
2023-10-23 19:18:52,308 epoch 10 - iter 120/121 - loss 0.00506168 - time (sec): 10.66 - samples/sec: 2310.54 - lr: 0.000000 - momentum: 0.000000
2023-10-23 19:18:52,370 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:52,371 EPOCH 10 done: loss 0.0050 - lr: 0.000000
2023-10-23 19:18:53,071 DEV : loss 0.2112000286579132 - f1-score (micro avg)  0.8385
2023-10-23 19:18:53,545 ----------------------------------------------------------------------------------------------------
2023-10-23 19:18:53,546 Loading model from best epoch ...
2023-10-23 19:18:55,021 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 19:18:55,887 
Results:
- F-score (micro) 0.8146
- F-score (macro) 0.5846
- Accuracy 0.7066

By class:
              precision    recall  f1-score   support

        pers     0.8378    0.8921    0.8641       139
       scope     0.8321    0.8837    0.8571       129
        work     0.6593    0.7500    0.7018        80
         loc     1.0000    0.3333    0.5000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7942    0.8361    0.8146       360
   macro avg     0.6659    0.5718    0.5846       360
weighted avg     0.7932    0.8361    0.8092       360

2023-10-23 19:18:55,887 ----------------------------------------------------------------------------------------------------