stefan-it commited on
Commit
a2fc0a1
1 Parent(s): 5d4d90c

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +509 -0
training.log ADDED
@@ -0,0 +1,509 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-23 19:16:53,810 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-23 19:16:53,811 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=25, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-23 19:16:53,812 MultiCorpus: 966 train + 219 dev + 204 test sentences
316
+ - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
317
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-23 19:16:53,812 Train: 966 sentences
319
+ 2023-10-23 19:16:53,812 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-23 19:16:53,812 Training Params:
322
+ 2023-10-23 19:16:53,812 - learning_rate: "5e-05"
323
+ 2023-10-23 19:16:53,812 - mini_batch_size: "8"
324
+ 2023-10-23 19:16:53,812 - max_epochs: "10"
325
+ 2023-10-23 19:16:53,812 - shuffle: "True"
326
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-23 19:16:53,812 Plugins:
328
+ 2023-10-23 19:16:53,812 - TensorboardLogger
329
+ 2023-10-23 19:16:53,812 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-23 19:16:53,812 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-23 19:16:53,812 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-23 19:16:53,812 Computation:
335
+ 2023-10-23 19:16:53,812 - compute on device: cuda:0
336
+ 2023-10-23 19:16:53,812 - embedding storage: none
337
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-23 19:16:53,812 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
339
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-23 19:16:53,813 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-23 19:16:54,860 epoch 1 - iter 12/121 - loss 3.70276262 - time (sec): 1.05 - samples/sec: 2270.31 - lr: 0.000005 - momentum: 0.000000
343
+ 2023-10-23 19:16:55,939 epoch 1 - iter 24/121 - loss 2.94388750 - time (sec): 2.13 - samples/sec: 2170.37 - lr: 0.000010 - momentum: 0.000000
344
+ 2023-10-23 19:16:56,993 epoch 1 - iter 36/121 - loss 2.14431472 - time (sec): 3.18 - samples/sec: 2245.23 - lr: 0.000014 - momentum: 0.000000
345
+ 2023-10-23 19:16:58,101 epoch 1 - iter 48/121 - loss 1.72480650 - time (sec): 4.29 - samples/sec: 2348.26 - lr: 0.000019 - momentum: 0.000000
346
+ 2023-10-23 19:16:59,086 epoch 1 - iter 60/121 - loss 1.52035465 - time (sec): 5.27 - samples/sec: 2303.07 - lr: 0.000024 - momentum: 0.000000
347
+ 2023-10-23 19:17:00,187 epoch 1 - iter 72/121 - loss 1.33210475 - time (sec): 6.37 - samples/sec: 2294.42 - lr: 0.000029 - momentum: 0.000000
348
+ 2023-10-23 19:17:01,246 epoch 1 - iter 84/121 - loss 1.20099635 - time (sec): 7.43 - samples/sec: 2280.42 - lr: 0.000034 - momentum: 0.000000
349
+ 2023-10-23 19:17:02,345 epoch 1 - iter 96/121 - loss 1.07387613 - time (sec): 8.53 - samples/sec: 2299.86 - lr: 0.000039 - momentum: 0.000000
350
+ 2023-10-23 19:17:03,427 epoch 1 - iter 108/121 - loss 0.98002301 - time (sec): 9.61 - samples/sec: 2296.51 - lr: 0.000044 - momentum: 0.000000
351
+ 2023-10-23 19:17:04,469 epoch 1 - iter 120/121 - loss 0.90647831 - time (sec): 10.66 - samples/sec: 2302.02 - lr: 0.000049 - momentum: 0.000000
352
+ 2023-10-23 19:17:04,543 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-23 19:17:04,544 EPOCH 1 done: loss 0.8991 - lr: 0.000049
354
+ 2023-10-23 19:17:05,376 DEV : loss 0.18442463874816895 - f1-score (micro avg) 0.6868
355
+ 2023-10-23 19:17:05,381 saving best model
356
+ 2023-10-23 19:17:05,868 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-23 19:17:06,928 epoch 2 - iter 12/121 - loss 0.15705501 - time (sec): 1.06 - samples/sec: 2168.99 - lr: 0.000049 - momentum: 0.000000
358
+ 2023-10-23 19:17:08,035 epoch 2 - iter 24/121 - loss 0.13657685 - time (sec): 2.17 - samples/sec: 2214.74 - lr: 0.000049 - momentum: 0.000000
359
+ 2023-10-23 19:17:09,109 epoch 2 - iter 36/121 - loss 0.14488585 - time (sec): 3.24 - samples/sec: 2260.59 - lr: 0.000048 - momentum: 0.000000
360
+ 2023-10-23 19:17:10,171 epoch 2 - iter 48/121 - loss 0.15283456 - time (sec): 4.30 - samples/sec: 2183.19 - lr: 0.000048 - momentum: 0.000000
361
+ 2023-10-23 19:17:11,332 epoch 2 - iter 60/121 - loss 0.15273878 - time (sec): 5.46 - samples/sec: 2225.64 - lr: 0.000047 - momentum: 0.000000
362
+ 2023-10-23 19:17:12,301 epoch 2 - iter 72/121 - loss 0.15603911 - time (sec): 6.43 - samples/sec: 2222.49 - lr: 0.000047 - momentum: 0.000000
363
+ 2023-10-23 19:17:13,332 epoch 2 - iter 84/121 - loss 0.15252101 - time (sec): 7.46 - samples/sec: 2261.11 - lr: 0.000046 - momentum: 0.000000
364
+ 2023-10-23 19:17:14,480 epoch 2 - iter 96/121 - loss 0.15153949 - time (sec): 8.61 - samples/sec: 2281.76 - lr: 0.000046 - momentum: 0.000000
365
+ 2023-10-23 19:17:15,522 epoch 2 - iter 108/121 - loss 0.14821059 - time (sec): 9.65 - samples/sec: 2278.10 - lr: 0.000045 - momentum: 0.000000
366
+ 2023-10-23 19:17:16,625 epoch 2 - iter 120/121 - loss 0.14288083 - time (sec): 10.76 - samples/sec: 2287.83 - lr: 0.000045 - momentum: 0.000000
367
+ 2023-10-23 19:17:16,696 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-23 19:17:16,697 EPOCH 2 done: loss 0.1424 - lr: 0.000045
369
+ 2023-10-23 19:17:17,402 DEV : loss 0.11657055467367172 - f1-score (micro avg) 0.7735
370
+ 2023-10-23 19:17:17,406 saving best model
371
+ 2023-10-23 19:17:18,089 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-23 19:17:19,070 epoch 3 - iter 12/121 - loss 0.08238361 - time (sec): 0.98 - samples/sec: 2252.66 - lr: 0.000044 - momentum: 0.000000
373
+ 2023-10-23 19:17:20,133 epoch 3 - iter 24/121 - loss 0.08198313 - time (sec): 2.04 - samples/sec: 2274.97 - lr: 0.000043 - momentum: 0.000000
374
+ 2023-10-23 19:17:21,336 epoch 3 - iter 36/121 - loss 0.09209441 - time (sec): 3.25 - samples/sec: 2217.70 - lr: 0.000043 - momentum: 0.000000
375
+ 2023-10-23 19:17:22,436 epoch 3 - iter 48/121 - loss 0.09095958 - time (sec): 4.35 - samples/sec: 2210.50 - lr: 0.000042 - momentum: 0.000000
376
+ 2023-10-23 19:17:23,484 epoch 3 - iter 60/121 - loss 0.09157820 - time (sec): 5.39 - samples/sec: 2235.27 - lr: 0.000042 - momentum: 0.000000
377
+ 2023-10-23 19:17:24,578 epoch 3 - iter 72/121 - loss 0.08770180 - time (sec): 6.49 - samples/sec: 2251.10 - lr: 0.000041 - momentum: 0.000000
378
+ 2023-10-23 19:17:25,710 epoch 3 - iter 84/121 - loss 0.08228471 - time (sec): 7.62 - samples/sec: 2227.99 - lr: 0.000041 - momentum: 0.000000
379
+ 2023-10-23 19:17:26,830 epoch 3 - iter 96/121 - loss 0.08072554 - time (sec): 8.74 - samples/sec: 2258.26 - lr: 0.000040 - momentum: 0.000000
380
+ 2023-10-23 19:17:27,828 epoch 3 - iter 108/121 - loss 0.08348649 - time (sec): 9.74 - samples/sec: 2269.70 - lr: 0.000040 - momentum: 0.000000
381
+ 2023-10-23 19:17:28,958 epoch 3 - iter 120/121 - loss 0.08324832 - time (sec): 10.87 - samples/sec: 2262.21 - lr: 0.000039 - momentum: 0.000000
382
+ 2023-10-23 19:17:29,035 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-23 19:17:29,036 EPOCH 3 done: loss 0.0828 - lr: 0.000039
384
+ 2023-10-23 19:17:29,746 DEV : loss 0.12160609662532806 - f1-score (micro avg) 0.8191
385
+ 2023-10-23 19:17:29,750 saving best model
386
+ 2023-10-23 19:17:30,362 ----------------------------------------------------------------------------------------------------
387
+ 2023-10-23 19:17:31,428 epoch 4 - iter 12/121 - loss 0.04546451 - time (sec): 1.06 - samples/sec: 2196.28 - lr: 0.000038 - momentum: 0.000000
388
+ 2023-10-23 19:17:32,597 epoch 4 - iter 24/121 - loss 0.06098250 - time (sec): 2.23 - samples/sec: 2185.14 - lr: 0.000038 - momentum: 0.000000
389
+ 2023-10-23 19:17:33,672 epoch 4 - iter 36/121 - loss 0.05602913 - time (sec): 3.31 - samples/sec: 2214.07 - lr: 0.000037 - momentum: 0.000000
390
+ 2023-10-23 19:17:34,748 epoch 4 - iter 48/121 - loss 0.05772828 - time (sec): 4.39 - samples/sec: 2250.27 - lr: 0.000037 - momentum: 0.000000
391
+ 2023-10-23 19:17:35,830 epoch 4 - iter 60/121 - loss 0.05350712 - time (sec): 5.47 - samples/sec: 2300.81 - lr: 0.000036 - momentum: 0.000000
392
+ 2023-10-23 19:17:36,946 epoch 4 - iter 72/121 - loss 0.05555258 - time (sec): 6.58 - samples/sec: 2314.94 - lr: 0.000036 - momentum: 0.000000
393
+ 2023-10-23 19:17:37,930 epoch 4 - iter 84/121 - loss 0.05687203 - time (sec): 7.57 - samples/sec: 2300.44 - lr: 0.000035 - momentum: 0.000000
394
+ 2023-10-23 19:17:38,978 epoch 4 - iter 96/121 - loss 0.05775887 - time (sec): 8.61 - samples/sec: 2296.05 - lr: 0.000035 - momentum: 0.000000
395
+ 2023-10-23 19:17:40,075 epoch 4 - iter 108/121 - loss 0.05928323 - time (sec): 9.71 - samples/sec: 2297.60 - lr: 0.000034 - momentum: 0.000000
396
+ 2023-10-23 19:17:41,104 epoch 4 - iter 120/121 - loss 0.05753039 - time (sec): 10.74 - samples/sec: 2297.05 - lr: 0.000034 - momentum: 0.000000
397
+ 2023-10-23 19:17:41,170 ----------------------------------------------------------------------------------------------------
398
+ 2023-10-23 19:17:41,170 EPOCH 4 done: loss 0.0574 - lr: 0.000034
399
+ 2023-10-23 19:17:41,877 DEV : loss 0.13370861113071442 - f1-score (micro avg) 0.846
400
+ 2023-10-23 19:17:41,881 saving best model
401
+ 2023-10-23 19:17:42,498 ----------------------------------------------------------------------------------------------------
402
+ 2023-10-23 19:17:43,607 epoch 5 - iter 12/121 - loss 0.03795536 - time (sec): 1.11 - samples/sec: 2037.39 - lr: 0.000033 - momentum: 0.000000
403
+ 2023-10-23 19:17:44,666 epoch 5 - iter 24/121 - loss 0.04199710 - time (sec): 2.17 - samples/sec: 2151.57 - lr: 0.000032 - momentum: 0.000000
404
+ 2023-10-23 19:17:45,727 epoch 5 - iter 36/121 - loss 0.04063135 - time (sec): 3.23 - samples/sec: 2183.68 - lr: 0.000032 - momentum: 0.000000
405
+ 2023-10-23 19:17:46,828 epoch 5 - iter 48/121 - loss 0.04131379 - time (sec): 4.33 - samples/sec: 2223.47 - lr: 0.000031 - momentum: 0.000000
406
+ 2023-10-23 19:17:48,013 epoch 5 - iter 60/121 - loss 0.04224433 - time (sec): 5.51 - samples/sec: 2249.93 - lr: 0.000031 - momentum: 0.000000
407
+ 2023-10-23 19:17:49,089 epoch 5 - iter 72/121 - loss 0.04511043 - time (sec): 6.59 - samples/sec: 2245.11 - lr: 0.000030 - momentum: 0.000000
408
+ 2023-10-23 19:17:50,147 epoch 5 - iter 84/121 - loss 0.04148152 - time (sec): 7.65 - samples/sec: 2261.72 - lr: 0.000030 - momentum: 0.000000
409
+ 2023-10-23 19:17:51,189 epoch 5 - iter 96/121 - loss 0.04159397 - time (sec): 8.69 - samples/sec: 2256.58 - lr: 0.000029 - momentum: 0.000000
410
+ 2023-10-23 19:17:52,225 epoch 5 - iter 108/121 - loss 0.04023066 - time (sec): 9.73 - samples/sec: 2262.81 - lr: 0.000029 - momentum: 0.000000
411
+ 2023-10-23 19:17:53,290 epoch 5 - iter 120/121 - loss 0.03970280 - time (sec): 10.79 - samples/sec: 2270.68 - lr: 0.000028 - momentum: 0.000000
412
+ 2023-10-23 19:17:53,378 ----------------------------------------------------------------------------------------------------
413
+ 2023-10-23 19:17:53,378 EPOCH 5 done: loss 0.0399 - lr: 0.000028
414
+ 2023-10-23 19:17:54,086 DEV : loss 0.15133920311927795 - f1-score (micro avg) 0.8446
415
+ 2023-10-23 19:17:54,091 ----------------------------------------------------------------------------------------------------
416
+ 2023-10-23 19:17:55,186 epoch 6 - iter 12/121 - loss 0.02447443 - time (sec): 1.09 - samples/sec: 2281.68 - lr: 0.000027 - momentum: 0.000000
417
+ 2023-10-23 19:17:56,257 epoch 6 - iter 24/121 - loss 0.02866063 - time (sec): 2.16 - samples/sec: 2292.94 - lr: 0.000027 - momentum: 0.000000
418
+ 2023-10-23 19:17:57,361 epoch 6 - iter 36/121 - loss 0.02466423 - time (sec): 3.27 - samples/sec: 2227.08 - lr: 0.000026 - momentum: 0.000000
419
+ 2023-10-23 19:17:58,323 epoch 6 - iter 48/121 - loss 0.02453619 - time (sec): 4.23 - samples/sec: 2253.25 - lr: 0.000026 - momentum: 0.000000
420
+ 2023-10-23 19:17:59,502 epoch 6 - iter 60/121 - loss 0.02414396 - time (sec): 5.41 - samples/sec: 2276.41 - lr: 0.000025 - momentum: 0.000000
421
+ 2023-10-23 19:18:00,637 epoch 6 - iter 72/121 - loss 0.02532751 - time (sec): 6.55 - samples/sec: 2254.28 - lr: 0.000025 - momentum: 0.000000
422
+ 2023-10-23 19:18:01,786 epoch 6 - iter 84/121 - loss 0.02501141 - time (sec): 7.69 - samples/sec: 2216.56 - lr: 0.000024 - momentum: 0.000000
423
+ 2023-10-23 19:18:02,857 epoch 6 - iter 96/121 - loss 0.02620381 - time (sec): 8.77 - samples/sec: 2237.47 - lr: 0.000024 - momentum: 0.000000
424
+ 2023-10-23 19:18:03,974 epoch 6 - iter 108/121 - loss 0.02653234 - time (sec): 9.88 - samples/sec: 2223.71 - lr: 0.000023 - momentum: 0.000000
425
+ 2023-10-23 19:18:05,062 epoch 6 - iter 120/121 - loss 0.02794705 - time (sec): 10.97 - samples/sec: 2239.31 - lr: 0.000022 - momentum: 0.000000
426
+ 2023-10-23 19:18:05,131 ----------------------------------------------------------------------------------------------------
427
+ 2023-10-23 19:18:05,132 EPOCH 6 done: loss 0.0279 - lr: 0.000022
428
+ 2023-10-23 19:18:05,992 DEV : loss 0.14656664431095123 - f1-score (micro avg) 0.8522
429
+ 2023-10-23 19:18:05,996 saving best model
430
+ 2023-10-23 19:18:06,638 ----------------------------------------------------------------------------------------------------
431
+ 2023-10-23 19:18:07,720 epoch 7 - iter 12/121 - loss 0.01613967 - time (sec): 1.08 - samples/sec: 2476.21 - lr: 0.000022 - momentum: 0.000000
432
+ 2023-10-23 19:18:08,819 epoch 7 - iter 24/121 - loss 0.01984545 - time (sec): 2.18 - samples/sec: 2331.63 - lr: 0.000021 - momentum: 0.000000
433
+ 2023-10-23 19:18:09,900 epoch 7 - iter 36/121 - loss 0.01834316 - time (sec): 3.26 - samples/sec: 2305.23 - lr: 0.000021 - momentum: 0.000000
434
+ 2023-10-23 19:18:10,999 epoch 7 - iter 48/121 - loss 0.01661789 - time (sec): 4.36 - samples/sec: 2300.87 - lr: 0.000020 - momentum: 0.000000
435
+ 2023-10-23 19:18:12,044 epoch 7 - iter 60/121 - loss 0.01760996 - time (sec): 5.40 - samples/sec: 2298.50 - lr: 0.000020 - momentum: 0.000000
436
+ 2023-10-23 19:18:13,220 epoch 7 - iter 72/121 - loss 0.01879381 - time (sec): 6.58 - samples/sec: 2251.54 - lr: 0.000019 - momentum: 0.000000
437
+ 2023-10-23 19:18:14,262 epoch 7 - iter 84/121 - loss 0.01780585 - time (sec): 7.62 - samples/sec: 2270.88 - lr: 0.000019 - momentum: 0.000000
438
+ 2023-10-23 19:18:15,353 epoch 7 - iter 96/121 - loss 0.01714403 - time (sec): 8.71 - samples/sec: 2268.93 - lr: 0.000018 - momentum: 0.000000
439
+ 2023-10-23 19:18:16,368 epoch 7 - iter 108/121 - loss 0.01812978 - time (sec): 9.73 - samples/sec: 2274.32 - lr: 0.000017 - momentum: 0.000000
440
+ 2023-10-23 19:18:17,435 epoch 7 - iter 120/121 - loss 0.01793965 - time (sec): 10.80 - samples/sec: 2274.95 - lr: 0.000017 - momentum: 0.000000
441
+ 2023-10-23 19:18:17,503 ----------------------------------------------------------------------------------------------------
442
+ 2023-10-23 19:18:17,504 EPOCH 7 done: loss 0.0193 - lr: 0.000017
443
+ 2023-10-23 19:18:18,201 DEV : loss 0.18479269742965698 - f1-score (micro avg) 0.8539
444
+ 2023-10-23 19:18:18,205 saving best model
445
+ 2023-10-23 19:18:18,809 ----------------------------------------------------------------------------------------------------
446
+ 2023-10-23 19:18:19,886 epoch 8 - iter 12/121 - loss 0.01658824 - time (sec): 1.08 - samples/sec: 2310.61 - lr: 0.000016 - momentum: 0.000000
447
+ 2023-10-23 19:18:20,994 epoch 8 - iter 24/121 - loss 0.01445413 - time (sec): 2.18 - samples/sec: 2277.77 - lr: 0.000016 - momentum: 0.000000
448
+ 2023-10-23 19:18:22,068 epoch 8 - iter 36/121 - loss 0.01111450 - time (sec): 3.26 - samples/sec: 2253.49 - lr: 0.000015 - momentum: 0.000000
449
+ 2023-10-23 19:18:23,079 epoch 8 - iter 48/121 - loss 0.01111916 - time (sec): 4.27 - samples/sec: 2282.85 - lr: 0.000015 - momentum: 0.000000
450
+ 2023-10-23 19:18:24,085 epoch 8 - iter 60/121 - loss 0.01083118 - time (sec): 5.27 - samples/sec: 2267.00 - lr: 0.000014 - momentum: 0.000000
451
+ 2023-10-23 19:18:25,103 epoch 8 - iter 72/121 - loss 0.01159512 - time (sec): 6.29 - samples/sec: 2296.82 - lr: 0.000014 - momentum: 0.000000
452
+ 2023-10-23 19:18:26,208 epoch 8 - iter 84/121 - loss 0.01313584 - time (sec): 7.40 - samples/sec: 2297.06 - lr: 0.000013 - momentum: 0.000000
453
+ 2023-10-23 19:18:27,351 epoch 8 - iter 96/121 - loss 0.01196163 - time (sec): 8.54 - samples/sec: 2317.34 - lr: 0.000013 - momentum: 0.000000
454
+ 2023-10-23 19:18:28,377 epoch 8 - iter 108/121 - loss 0.01122020 - time (sec): 9.57 - samples/sec: 2325.53 - lr: 0.000012 - momentum: 0.000000
455
+ 2023-10-23 19:18:29,426 epoch 8 - iter 120/121 - loss 0.01269033 - time (sec): 10.62 - samples/sec: 2306.08 - lr: 0.000011 - momentum: 0.000000
456
+ 2023-10-23 19:18:29,541 ----------------------------------------------------------------------------------------------------
457
+ 2023-10-23 19:18:29,541 EPOCH 8 done: loss 0.0126 - lr: 0.000011
458
+ 2023-10-23 19:18:30,241 DEV : loss 0.19710467755794525 - f1-score (micro avg) 0.8424
459
+ 2023-10-23 19:18:30,245 ----------------------------------------------------------------------------------------------------
460
+ 2023-10-23 19:18:31,235 epoch 9 - iter 12/121 - loss 0.01794818 - time (sec): 0.99 - samples/sec: 2435.01 - lr: 0.000011 - momentum: 0.000000
461
+ 2023-10-23 19:18:32,276 epoch 9 - iter 24/121 - loss 0.01251622 - time (sec): 2.03 - samples/sec: 2419.60 - lr: 0.000010 - momentum: 0.000000
462
+ 2023-10-23 19:18:33,383 epoch 9 - iter 36/121 - loss 0.00847168 - time (sec): 3.14 - samples/sec: 2357.98 - lr: 0.000010 - momentum: 0.000000
463
+ 2023-10-23 19:18:34,465 epoch 9 - iter 48/121 - loss 0.00852648 - time (sec): 4.22 - samples/sec: 2390.40 - lr: 0.000009 - momentum: 0.000000
464
+ 2023-10-23 19:18:35,515 epoch 9 - iter 60/121 - loss 0.01017054 - time (sec): 5.27 - samples/sec: 2364.10 - lr: 0.000009 - momentum: 0.000000
465
+ 2023-10-23 19:18:36,635 epoch 9 - iter 72/121 - loss 0.00894353 - time (sec): 6.39 - samples/sec: 2360.02 - lr: 0.000008 - momentum: 0.000000
466
+ 2023-10-23 19:18:37,664 epoch 9 - iter 84/121 - loss 0.00789992 - time (sec): 7.42 - samples/sec: 2350.40 - lr: 0.000008 - momentum: 0.000000
467
+ 2023-10-23 19:18:38,698 epoch 9 - iter 96/121 - loss 0.00788349 - time (sec): 8.45 - samples/sec: 2357.86 - lr: 0.000007 - momentum: 0.000000
468
+ 2023-10-23 19:18:39,793 epoch 9 - iter 108/121 - loss 0.00834119 - time (sec): 9.55 - samples/sec: 2314.69 - lr: 0.000006 - momentum: 0.000000
469
+ 2023-10-23 19:18:40,873 epoch 9 - iter 120/121 - loss 0.00822010 - time (sec): 10.63 - samples/sec: 2318.95 - lr: 0.000006 - momentum: 0.000000
470
+ 2023-10-23 19:18:40,946 ----------------------------------------------------------------------------------------------------
471
+ 2023-10-23 19:18:40,947 EPOCH 9 done: loss 0.0082 - lr: 0.000006
472
+ 2023-10-23 19:18:41,647 DEV : loss 0.2059398740530014 - f1-score (micro avg) 0.8354
473
+ 2023-10-23 19:18:41,651 ----------------------------------------------------------------------------------------------------
474
+ 2023-10-23 19:18:42,828 epoch 10 - iter 12/121 - loss 0.00397773 - time (sec): 1.18 - samples/sec: 2221.89 - lr: 0.000005 - momentum: 0.000000
475
+ 2023-10-23 19:18:43,931 epoch 10 - iter 24/121 - loss 0.00493849 - time (sec): 2.28 - samples/sec: 2261.14 - lr: 0.000005 - momentum: 0.000000
476
+ 2023-10-23 19:18:44,978 epoch 10 - iter 36/121 - loss 0.00334518 - time (sec): 3.33 - samples/sec: 2351.77 - lr: 0.000004 - momentum: 0.000000
477
+ 2023-10-23 19:18:46,067 epoch 10 - iter 48/121 - loss 0.00273462 - time (sec): 4.42 - samples/sec: 2344.85 - lr: 0.000004 - momentum: 0.000000
478
+ 2023-10-23 19:18:47,158 epoch 10 - iter 60/121 - loss 0.00482458 - time (sec): 5.51 - samples/sec: 2334.56 - lr: 0.000003 - momentum: 0.000000
479
+ 2023-10-23 19:18:48,231 epoch 10 - iter 72/121 - loss 0.00411537 - time (sec): 6.58 - samples/sec: 2316.05 - lr: 0.000003 - momentum: 0.000000
480
+ 2023-10-23 19:18:49,216 epoch 10 - iter 84/121 - loss 0.00517085 - time (sec): 7.56 - samples/sec: 2302.06 - lr: 0.000002 - momentum: 0.000000
481
+ 2023-10-23 19:18:50,215 epoch 10 - iter 96/121 - loss 0.00461560 - time (sec): 8.56 - samples/sec: 2316.71 - lr: 0.000001 - momentum: 0.000000
482
+ 2023-10-23 19:18:51,284 epoch 10 - iter 108/121 - loss 0.00542344 - time (sec): 9.63 - samples/sec: 2319.31 - lr: 0.000001 - momentum: 0.000000
483
+ 2023-10-23 19:18:52,308 epoch 10 - iter 120/121 - loss 0.00506168 - time (sec): 10.66 - samples/sec: 2310.54 - lr: 0.000000 - momentum: 0.000000
484
+ 2023-10-23 19:18:52,370 ----------------------------------------------------------------------------------------------------
485
+ 2023-10-23 19:18:52,371 EPOCH 10 done: loss 0.0050 - lr: 0.000000
486
+ 2023-10-23 19:18:53,071 DEV : loss 0.2112000286579132 - f1-score (micro avg) 0.8385
487
+ 2023-10-23 19:18:53,545 ----------------------------------------------------------------------------------------------------
488
+ 2023-10-23 19:18:53,546 Loading model from best epoch ...
489
+ 2023-10-23 19:18:55,021 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
490
+ 2023-10-23 19:18:55,887
491
+ Results:
492
+ - F-score (micro) 0.8146
493
+ - F-score (macro) 0.5846
494
+ - Accuracy 0.7066
495
+
496
+ By class:
497
+ precision recall f1-score support
498
+
499
+ pers 0.8378 0.8921 0.8641 139
500
+ scope 0.8321 0.8837 0.8571 129
501
+ work 0.6593 0.7500 0.7018 80
502
+ loc 1.0000 0.3333 0.5000 9
503
+ date 0.0000 0.0000 0.0000 3
504
+
505
+ micro avg 0.7942 0.8361 0.8146 360
506
+ macro avg 0.6659 0.5718 0.5846 360
507
+ weighted avg 0.7932 0.8361 0.8092 360
508
+
509
+ 2023-10-23 19:18:55,887 ----------------------------------------------------------------------------------------------------