Upload ./training.log with huggingface_hub
Browse files- training.log +509 -0
training.log
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 19:16:53,810 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 19:16:53,811 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 19:16:53,812 MultiCorpus: 966 train + 219 dev + 204 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
|
317 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 19:16:53,812 Train: 966 sentences
|
319 |
+
2023-10-23 19:16:53,812 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 19:16:53,812 Training Params:
|
322 |
+
2023-10-23 19:16:53,812 - learning_rate: "5e-05"
|
323 |
+
2023-10-23 19:16:53,812 - mini_batch_size: "8"
|
324 |
+
2023-10-23 19:16:53,812 - max_epochs: "10"
|
325 |
+
2023-10-23 19:16:53,812 - shuffle: "True"
|
326 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 19:16:53,812 Plugins:
|
328 |
+
2023-10-23 19:16:53,812 - TensorboardLogger
|
329 |
+
2023-10-23 19:16:53,812 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 19:16:53,812 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 19:16:53,812 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 19:16:53,812 Computation:
|
335 |
+
2023-10-23 19:16:53,812 - compute on device: cuda:0
|
336 |
+
2023-10-23 19:16:53,812 - embedding storage: none
|
337 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 19:16:53,812 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 19:16:53,812 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 19:16:53,813 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 19:16:54,860 epoch 1 - iter 12/121 - loss 3.70276262 - time (sec): 1.05 - samples/sec: 2270.31 - lr: 0.000005 - momentum: 0.000000
|
343 |
+
2023-10-23 19:16:55,939 epoch 1 - iter 24/121 - loss 2.94388750 - time (sec): 2.13 - samples/sec: 2170.37 - lr: 0.000010 - momentum: 0.000000
|
344 |
+
2023-10-23 19:16:56,993 epoch 1 - iter 36/121 - loss 2.14431472 - time (sec): 3.18 - samples/sec: 2245.23 - lr: 0.000014 - momentum: 0.000000
|
345 |
+
2023-10-23 19:16:58,101 epoch 1 - iter 48/121 - loss 1.72480650 - time (sec): 4.29 - samples/sec: 2348.26 - lr: 0.000019 - momentum: 0.000000
|
346 |
+
2023-10-23 19:16:59,086 epoch 1 - iter 60/121 - loss 1.52035465 - time (sec): 5.27 - samples/sec: 2303.07 - lr: 0.000024 - momentum: 0.000000
|
347 |
+
2023-10-23 19:17:00,187 epoch 1 - iter 72/121 - loss 1.33210475 - time (sec): 6.37 - samples/sec: 2294.42 - lr: 0.000029 - momentum: 0.000000
|
348 |
+
2023-10-23 19:17:01,246 epoch 1 - iter 84/121 - loss 1.20099635 - time (sec): 7.43 - samples/sec: 2280.42 - lr: 0.000034 - momentum: 0.000000
|
349 |
+
2023-10-23 19:17:02,345 epoch 1 - iter 96/121 - loss 1.07387613 - time (sec): 8.53 - samples/sec: 2299.86 - lr: 0.000039 - momentum: 0.000000
|
350 |
+
2023-10-23 19:17:03,427 epoch 1 - iter 108/121 - loss 0.98002301 - time (sec): 9.61 - samples/sec: 2296.51 - lr: 0.000044 - momentum: 0.000000
|
351 |
+
2023-10-23 19:17:04,469 epoch 1 - iter 120/121 - loss 0.90647831 - time (sec): 10.66 - samples/sec: 2302.02 - lr: 0.000049 - momentum: 0.000000
|
352 |
+
2023-10-23 19:17:04,543 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 19:17:04,544 EPOCH 1 done: loss 0.8991 - lr: 0.000049
|
354 |
+
2023-10-23 19:17:05,376 DEV : loss 0.18442463874816895 - f1-score (micro avg) 0.6868
|
355 |
+
2023-10-23 19:17:05,381 saving best model
|
356 |
+
2023-10-23 19:17:05,868 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 19:17:06,928 epoch 2 - iter 12/121 - loss 0.15705501 - time (sec): 1.06 - samples/sec: 2168.99 - lr: 0.000049 - momentum: 0.000000
|
358 |
+
2023-10-23 19:17:08,035 epoch 2 - iter 24/121 - loss 0.13657685 - time (sec): 2.17 - samples/sec: 2214.74 - lr: 0.000049 - momentum: 0.000000
|
359 |
+
2023-10-23 19:17:09,109 epoch 2 - iter 36/121 - loss 0.14488585 - time (sec): 3.24 - samples/sec: 2260.59 - lr: 0.000048 - momentum: 0.000000
|
360 |
+
2023-10-23 19:17:10,171 epoch 2 - iter 48/121 - loss 0.15283456 - time (sec): 4.30 - samples/sec: 2183.19 - lr: 0.000048 - momentum: 0.000000
|
361 |
+
2023-10-23 19:17:11,332 epoch 2 - iter 60/121 - loss 0.15273878 - time (sec): 5.46 - samples/sec: 2225.64 - lr: 0.000047 - momentum: 0.000000
|
362 |
+
2023-10-23 19:17:12,301 epoch 2 - iter 72/121 - loss 0.15603911 - time (sec): 6.43 - samples/sec: 2222.49 - lr: 0.000047 - momentum: 0.000000
|
363 |
+
2023-10-23 19:17:13,332 epoch 2 - iter 84/121 - loss 0.15252101 - time (sec): 7.46 - samples/sec: 2261.11 - lr: 0.000046 - momentum: 0.000000
|
364 |
+
2023-10-23 19:17:14,480 epoch 2 - iter 96/121 - loss 0.15153949 - time (sec): 8.61 - samples/sec: 2281.76 - lr: 0.000046 - momentum: 0.000000
|
365 |
+
2023-10-23 19:17:15,522 epoch 2 - iter 108/121 - loss 0.14821059 - time (sec): 9.65 - samples/sec: 2278.10 - lr: 0.000045 - momentum: 0.000000
|
366 |
+
2023-10-23 19:17:16,625 epoch 2 - iter 120/121 - loss 0.14288083 - time (sec): 10.76 - samples/sec: 2287.83 - lr: 0.000045 - momentum: 0.000000
|
367 |
+
2023-10-23 19:17:16,696 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 19:17:16,697 EPOCH 2 done: loss 0.1424 - lr: 0.000045
|
369 |
+
2023-10-23 19:17:17,402 DEV : loss 0.11657055467367172 - f1-score (micro avg) 0.7735
|
370 |
+
2023-10-23 19:17:17,406 saving best model
|
371 |
+
2023-10-23 19:17:18,089 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 19:17:19,070 epoch 3 - iter 12/121 - loss 0.08238361 - time (sec): 0.98 - samples/sec: 2252.66 - lr: 0.000044 - momentum: 0.000000
|
373 |
+
2023-10-23 19:17:20,133 epoch 3 - iter 24/121 - loss 0.08198313 - time (sec): 2.04 - samples/sec: 2274.97 - lr: 0.000043 - momentum: 0.000000
|
374 |
+
2023-10-23 19:17:21,336 epoch 3 - iter 36/121 - loss 0.09209441 - time (sec): 3.25 - samples/sec: 2217.70 - lr: 0.000043 - momentum: 0.000000
|
375 |
+
2023-10-23 19:17:22,436 epoch 3 - iter 48/121 - loss 0.09095958 - time (sec): 4.35 - samples/sec: 2210.50 - lr: 0.000042 - momentum: 0.000000
|
376 |
+
2023-10-23 19:17:23,484 epoch 3 - iter 60/121 - loss 0.09157820 - time (sec): 5.39 - samples/sec: 2235.27 - lr: 0.000042 - momentum: 0.000000
|
377 |
+
2023-10-23 19:17:24,578 epoch 3 - iter 72/121 - loss 0.08770180 - time (sec): 6.49 - samples/sec: 2251.10 - lr: 0.000041 - momentum: 0.000000
|
378 |
+
2023-10-23 19:17:25,710 epoch 3 - iter 84/121 - loss 0.08228471 - time (sec): 7.62 - samples/sec: 2227.99 - lr: 0.000041 - momentum: 0.000000
|
379 |
+
2023-10-23 19:17:26,830 epoch 3 - iter 96/121 - loss 0.08072554 - time (sec): 8.74 - samples/sec: 2258.26 - lr: 0.000040 - momentum: 0.000000
|
380 |
+
2023-10-23 19:17:27,828 epoch 3 - iter 108/121 - loss 0.08348649 - time (sec): 9.74 - samples/sec: 2269.70 - lr: 0.000040 - momentum: 0.000000
|
381 |
+
2023-10-23 19:17:28,958 epoch 3 - iter 120/121 - loss 0.08324832 - time (sec): 10.87 - samples/sec: 2262.21 - lr: 0.000039 - momentum: 0.000000
|
382 |
+
2023-10-23 19:17:29,035 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 19:17:29,036 EPOCH 3 done: loss 0.0828 - lr: 0.000039
|
384 |
+
2023-10-23 19:17:29,746 DEV : loss 0.12160609662532806 - f1-score (micro avg) 0.8191
|
385 |
+
2023-10-23 19:17:29,750 saving best model
|
386 |
+
2023-10-23 19:17:30,362 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 19:17:31,428 epoch 4 - iter 12/121 - loss 0.04546451 - time (sec): 1.06 - samples/sec: 2196.28 - lr: 0.000038 - momentum: 0.000000
|
388 |
+
2023-10-23 19:17:32,597 epoch 4 - iter 24/121 - loss 0.06098250 - time (sec): 2.23 - samples/sec: 2185.14 - lr: 0.000038 - momentum: 0.000000
|
389 |
+
2023-10-23 19:17:33,672 epoch 4 - iter 36/121 - loss 0.05602913 - time (sec): 3.31 - samples/sec: 2214.07 - lr: 0.000037 - momentum: 0.000000
|
390 |
+
2023-10-23 19:17:34,748 epoch 4 - iter 48/121 - loss 0.05772828 - time (sec): 4.39 - samples/sec: 2250.27 - lr: 0.000037 - momentum: 0.000000
|
391 |
+
2023-10-23 19:17:35,830 epoch 4 - iter 60/121 - loss 0.05350712 - time (sec): 5.47 - samples/sec: 2300.81 - lr: 0.000036 - momentum: 0.000000
|
392 |
+
2023-10-23 19:17:36,946 epoch 4 - iter 72/121 - loss 0.05555258 - time (sec): 6.58 - samples/sec: 2314.94 - lr: 0.000036 - momentum: 0.000000
|
393 |
+
2023-10-23 19:17:37,930 epoch 4 - iter 84/121 - loss 0.05687203 - time (sec): 7.57 - samples/sec: 2300.44 - lr: 0.000035 - momentum: 0.000000
|
394 |
+
2023-10-23 19:17:38,978 epoch 4 - iter 96/121 - loss 0.05775887 - time (sec): 8.61 - samples/sec: 2296.05 - lr: 0.000035 - momentum: 0.000000
|
395 |
+
2023-10-23 19:17:40,075 epoch 4 - iter 108/121 - loss 0.05928323 - time (sec): 9.71 - samples/sec: 2297.60 - lr: 0.000034 - momentum: 0.000000
|
396 |
+
2023-10-23 19:17:41,104 epoch 4 - iter 120/121 - loss 0.05753039 - time (sec): 10.74 - samples/sec: 2297.05 - lr: 0.000034 - momentum: 0.000000
|
397 |
+
2023-10-23 19:17:41,170 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 19:17:41,170 EPOCH 4 done: loss 0.0574 - lr: 0.000034
|
399 |
+
2023-10-23 19:17:41,877 DEV : loss 0.13370861113071442 - f1-score (micro avg) 0.846
|
400 |
+
2023-10-23 19:17:41,881 saving best model
|
401 |
+
2023-10-23 19:17:42,498 ----------------------------------------------------------------------------------------------------
|
402 |
+
2023-10-23 19:17:43,607 epoch 5 - iter 12/121 - loss 0.03795536 - time (sec): 1.11 - samples/sec: 2037.39 - lr: 0.000033 - momentum: 0.000000
|
403 |
+
2023-10-23 19:17:44,666 epoch 5 - iter 24/121 - loss 0.04199710 - time (sec): 2.17 - samples/sec: 2151.57 - lr: 0.000032 - momentum: 0.000000
|
404 |
+
2023-10-23 19:17:45,727 epoch 5 - iter 36/121 - loss 0.04063135 - time (sec): 3.23 - samples/sec: 2183.68 - lr: 0.000032 - momentum: 0.000000
|
405 |
+
2023-10-23 19:17:46,828 epoch 5 - iter 48/121 - loss 0.04131379 - time (sec): 4.33 - samples/sec: 2223.47 - lr: 0.000031 - momentum: 0.000000
|
406 |
+
2023-10-23 19:17:48,013 epoch 5 - iter 60/121 - loss 0.04224433 - time (sec): 5.51 - samples/sec: 2249.93 - lr: 0.000031 - momentum: 0.000000
|
407 |
+
2023-10-23 19:17:49,089 epoch 5 - iter 72/121 - loss 0.04511043 - time (sec): 6.59 - samples/sec: 2245.11 - lr: 0.000030 - momentum: 0.000000
|
408 |
+
2023-10-23 19:17:50,147 epoch 5 - iter 84/121 - loss 0.04148152 - time (sec): 7.65 - samples/sec: 2261.72 - lr: 0.000030 - momentum: 0.000000
|
409 |
+
2023-10-23 19:17:51,189 epoch 5 - iter 96/121 - loss 0.04159397 - time (sec): 8.69 - samples/sec: 2256.58 - lr: 0.000029 - momentum: 0.000000
|
410 |
+
2023-10-23 19:17:52,225 epoch 5 - iter 108/121 - loss 0.04023066 - time (sec): 9.73 - samples/sec: 2262.81 - lr: 0.000029 - momentum: 0.000000
|
411 |
+
2023-10-23 19:17:53,290 epoch 5 - iter 120/121 - loss 0.03970280 - time (sec): 10.79 - samples/sec: 2270.68 - lr: 0.000028 - momentum: 0.000000
|
412 |
+
2023-10-23 19:17:53,378 ----------------------------------------------------------------------------------------------------
|
413 |
+
2023-10-23 19:17:53,378 EPOCH 5 done: loss 0.0399 - lr: 0.000028
|
414 |
+
2023-10-23 19:17:54,086 DEV : loss 0.15133920311927795 - f1-score (micro avg) 0.8446
|
415 |
+
2023-10-23 19:17:54,091 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-23 19:17:55,186 epoch 6 - iter 12/121 - loss 0.02447443 - time (sec): 1.09 - samples/sec: 2281.68 - lr: 0.000027 - momentum: 0.000000
|
417 |
+
2023-10-23 19:17:56,257 epoch 6 - iter 24/121 - loss 0.02866063 - time (sec): 2.16 - samples/sec: 2292.94 - lr: 0.000027 - momentum: 0.000000
|
418 |
+
2023-10-23 19:17:57,361 epoch 6 - iter 36/121 - loss 0.02466423 - time (sec): 3.27 - samples/sec: 2227.08 - lr: 0.000026 - momentum: 0.000000
|
419 |
+
2023-10-23 19:17:58,323 epoch 6 - iter 48/121 - loss 0.02453619 - time (sec): 4.23 - samples/sec: 2253.25 - lr: 0.000026 - momentum: 0.000000
|
420 |
+
2023-10-23 19:17:59,502 epoch 6 - iter 60/121 - loss 0.02414396 - time (sec): 5.41 - samples/sec: 2276.41 - lr: 0.000025 - momentum: 0.000000
|
421 |
+
2023-10-23 19:18:00,637 epoch 6 - iter 72/121 - loss 0.02532751 - time (sec): 6.55 - samples/sec: 2254.28 - lr: 0.000025 - momentum: 0.000000
|
422 |
+
2023-10-23 19:18:01,786 epoch 6 - iter 84/121 - loss 0.02501141 - time (sec): 7.69 - samples/sec: 2216.56 - lr: 0.000024 - momentum: 0.000000
|
423 |
+
2023-10-23 19:18:02,857 epoch 6 - iter 96/121 - loss 0.02620381 - time (sec): 8.77 - samples/sec: 2237.47 - lr: 0.000024 - momentum: 0.000000
|
424 |
+
2023-10-23 19:18:03,974 epoch 6 - iter 108/121 - loss 0.02653234 - time (sec): 9.88 - samples/sec: 2223.71 - lr: 0.000023 - momentum: 0.000000
|
425 |
+
2023-10-23 19:18:05,062 epoch 6 - iter 120/121 - loss 0.02794705 - time (sec): 10.97 - samples/sec: 2239.31 - lr: 0.000022 - momentum: 0.000000
|
426 |
+
2023-10-23 19:18:05,131 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-23 19:18:05,132 EPOCH 6 done: loss 0.0279 - lr: 0.000022
|
428 |
+
2023-10-23 19:18:05,992 DEV : loss 0.14656664431095123 - f1-score (micro avg) 0.8522
|
429 |
+
2023-10-23 19:18:05,996 saving best model
|
430 |
+
2023-10-23 19:18:06,638 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-23 19:18:07,720 epoch 7 - iter 12/121 - loss 0.01613967 - time (sec): 1.08 - samples/sec: 2476.21 - lr: 0.000022 - momentum: 0.000000
|
432 |
+
2023-10-23 19:18:08,819 epoch 7 - iter 24/121 - loss 0.01984545 - time (sec): 2.18 - samples/sec: 2331.63 - lr: 0.000021 - momentum: 0.000000
|
433 |
+
2023-10-23 19:18:09,900 epoch 7 - iter 36/121 - loss 0.01834316 - time (sec): 3.26 - samples/sec: 2305.23 - lr: 0.000021 - momentum: 0.000000
|
434 |
+
2023-10-23 19:18:10,999 epoch 7 - iter 48/121 - loss 0.01661789 - time (sec): 4.36 - samples/sec: 2300.87 - lr: 0.000020 - momentum: 0.000000
|
435 |
+
2023-10-23 19:18:12,044 epoch 7 - iter 60/121 - loss 0.01760996 - time (sec): 5.40 - samples/sec: 2298.50 - lr: 0.000020 - momentum: 0.000000
|
436 |
+
2023-10-23 19:18:13,220 epoch 7 - iter 72/121 - loss 0.01879381 - time (sec): 6.58 - samples/sec: 2251.54 - lr: 0.000019 - momentum: 0.000000
|
437 |
+
2023-10-23 19:18:14,262 epoch 7 - iter 84/121 - loss 0.01780585 - time (sec): 7.62 - samples/sec: 2270.88 - lr: 0.000019 - momentum: 0.000000
|
438 |
+
2023-10-23 19:18:15,353 epoch 7 - iter 96/121 - loss 0.01714403 - time (sec): 8.71 - samples/sec: 2268.93 - lr: 0.000018 - momentum: 0.000000
|
439 |
+
2023-10-23 19:18:16,368 epoch 7 - iter 108/121 - loss 0.01812978 - time (sec): 9.73 - samples/sec: 2274.32 - lr: 0.000017 - momentum: 0.000000
|
440 |
+
2023-10-23 19:18:17,435 epoch 7 - iter 120/121 - loss 0.01793965 - time (sec): 10.80 - samples/sec: 2274.95 - lr: 0.000017 - momentum: 0.000000
|
441 |
+
2023-10-23 19:18:17,503 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-23 19:18:17,504 EPOCH 7 done: loss 0.0193 - lr: 0.000017
|
443 |
+
2023-10-23 19:18:18,201 DEV : loss 0.18479269742965698 - f1-score (micro avg) 0.8539
|
444 |
+
2023-10-23 19:18:18,205 saving best model
|
445 |
+
2023-10-23 19:18:18,809 ----------------------------------------------------------------------------------------------------
|
446 |
+
2023-10-23 19:18:19,886 epoch 8 - iter 12/121 - loss 0.01658824 - time (sec): 1.08 - samples/sec: 2310.61 - lr: 0.000016 - momentum: 0.000000
|
447 |
+
2023-10-23 19:18:20,994 epoch 8 - iter 24/121 - loss 0.01445413 - time (sec): 2.18 - samples/sec: 2277.77 - lr: 0.000016 - momentum: 0.000000
|
448 |
+
2023-10-23 19:18:22,068 epoch 8 - iter 36/121 - loss 0.01111450 - time (sec): 3.26 - samples/sec: 2253.49 - lr: 0.000015 - momentum: 0.000000
|
449 |
+
2023-10-23 19:18:23,079 epoch 8 - iter 48/121 - loss 0.01111916 - time (sec): 4.27 - samples/sec: 2282.85 - lr: 0.000015 - momentum: 0.000000
|
450 |
+
2023-10-23 19:18:24,085 epoch 8 - iter 60/121 - loss 0.01083118 - time (sec): 5.27 - samples/sec: 2267.00 - lr: 0.000014 - momentum: 0.000000
|
451 |
+
2023-10-23 19:18:25,103 epoch 8 - iter 72/121 - loss 0.01159512 - time (sec): 6.29 - samples/sec: 2296.82 - lr: 0.000014 - momentum: 0.000000
|
452 |
+
2023-10-23 19:18:26,208 epoch 8 - iter 84/121 - loss 0.01313584 - time (sec): 7.40 - samples/sec: 2297.06 - lr: 0.000013 - momentum: 0.000000
|
453 |
+
2023-10-23 19:18:27,351 epoch 8 - iter 96/121 - loss 0.01196163 - time (sec): 8.54 - samples/sec: 2317.34 - lr: 0.000013 - momentum: 0.000000
|
454 |
+
2023-10-23 19:18:28,377 epoch 8 - iter 108/121 - loss 0.01122020 - time (sec): 9.57 - samples/sec: 2325.53 - lr: 0.000012 - momentum: 0.000000
|
455 |
+
2023-10-23 19:18:29,426 epoch 8 - iter 120/121 - loss 0.01269033 - time (sec): 10.62 - samples/sec: 2306.08 - lr: 0.000011 - momentum: 0.000000
|
456 |
+
2023-10-23 19:18:29,541 ----------------------------------------------------------------------------------------------------
|
457 |
+
2023-10-23 19:18:29,541 EPOCH 8 done: loss 0.0126 - lr: 0.000011
|
458 |
+
2023-10-23 19:18:30,241 DEV : loss 0.19710467755794525 - f1-score (micro avg) 0.8424
|
459 |
+
2023-10-23 19:18:30,245 ----------------------------------------------------------------------------------------------------
|
460 |
+
2023-10-23 19:18:31,235 epoch 9 - iter 12/121 - loss 0.01794818 - time (sec): 0.99 - samples/sec: 2435.01 - lr: 0.000011 - momentum: 0.000000
|
461 |
+
2023-10-23 19:18:32,276 epoch 9 - iter 24/121 - loss 0.01251622 - time (sec): 2.03 - samples/sec: 2419.60 - lr: 0.000010 - momentum: 0.000000
|
462 |
+
2023-10-23 19:18:33,383 epoch 9 - iter 36/121 - loss 0.00847168 - time (sec): 3.14 - samples/sec: 2357.98 - lr: 0.000010 - momentum: 0.000000
|
463 |
+
2023-10-23 19:18:34,465 epoch 9 - iter 48/121 - loss 0.00852648 - time (sec): 4.22 - samples/sec: 2390.40 - lr: 0.000009 - momentum: 0.000000
|
464 |
+
2023-10-23 19:18:35,515 epoch 9 - iter 60/121 - loss 0.01017054 - time (sec): 5.27 - samples/sec: 2364.10 - lr: 0.000009 - momentum: 0.000000
|
465 |
+
2023-10-23 19:18:36,635 epoch 9 - iter 72/121 - loss 0.00894353 - time (sec): 6.39 - samples/sec: 2360.02 - lr: 0.000008 - momentum: 0.000000
|
466 |
+
2023-10-23 19:18:37,664 epoch 9 - iter 84/121 - loss 0.00789992 - time (sec): 7.42 - samples/sec: 2350.40 - lr: 0.000008 - momentum: 0.000000
|
467 |
+
2023-10-23 19:18:38,698 epoch 9 - iter 96/121 - loss 0.00788349 - time (sec): 8.45 - samples/sec: 2357.86 - lr: 0.000007 - momentum: 0.000000
|
468 |
+
2023-10-23 19:18:39,793 epoch 9 - iter 108/121 - loss 0.00834119 - time (sec): 9.55 - samples/sec: 2314.69 - lr: 0.000006 - momentum: 0.000000
|
469 |
+
2023-10-23 19:18:40,873 epoch 9 - iter 120/121 - loss 0.00822010 - time (sec): 10.63 - samples/sec: 2318.95 - lr: 0.000006 - momentum: 0.000000
|
470 |
+
2023-10-23 19:18:40,946 ----------------------------------------------------------------------------------------------------
|
471 |
+
2023-10-23 19:18:40,947 EPOCH 9 done: loss 0.0082 - lr: 0.000006
|
472 |
+
2023-10-23 19:18:41,647 DEV : loss 0.2059398740530014 - f1-score (micro avg) 0.8354
|
473 |
+
2023-10-23 19:18:41,651 ----------------------------------------------------------------------------------------------------
|
474 |
+
2023-10-23 19:18:42,828 epoch 10 - iter 12/121 - loss 0.00397773 - time (sec): 1.18 - samples/sec: 2221.89 - lr: 0.000005 - momentum: 0.000000
|
475 |
+
2023-10-23 19:18:43,931 epoch 10 - iter 24/121 - loss 0.00493849 - time (sec): 2.28 - samples/sec: 2261.14 - lr: 0.000005 - momentum: 0.000000
|
476 |
+
2023-10-23 19:18:44,978 epoch 10 - iter 36/121 - loss 0.00334518 - time (sec): 3.33 - samples/sec: 2351.77 - lr: 0.000004 - momentum: 0.000000
|
477 |
+
2023-10-23 19:18:46,067 epoch 10 - iter 48/121 - loss 0.00273462 - time (sec): 4.42 - samples/sec: 2344.85 - lr: 0.000004 - momentum: 0.000000
|
478 |
+
2023-10-23 19:18:47,158 epoch 10 - iter 60/121 - loss 0.00482458 - time (sec): 5.51 - samples/sec: 2334.56 - lr: 0.000003 - momentum: 0.000000
|
479 |
+
2023-10-23 19:18:48,231 epoch 10 - iter 72/121 - loss 0.00411537 - time (sec): 6.58 - samples/sec: 2316.05 - lr: 0.000003 - momentum: 0.000000
|
480 |
+
2023-10-23 19:18:49,216 epoch 10 - iter 84/121 - loss 0.00517085 - time (sec): 7.56 - samples/sec: 2302.06 - lr: 0.000002 - momentum: 0.000000
|
481 |
+
2023-10-23 19:18:50,215 epoch 10 - iter 96/121 - loss 0.00461560 - time (sec): 8.56 - samples/sec: 2316.71 - lr: 0.000001 - momentum: 0.000000
|
482 |
+
2023-10-23 19:18:51,284 epoch 10 - iter 108/121 - loss 0.00542344 - time (sec): 9.63 - samples/sec: 2319.31 - lr: 0.000001 - momentum: 0.000000
|
483 |
+
2023-10-23 19:18:52,308 epoch 10 - iter 120/121 - loss 0.00506168 - time (sec): 10.66 - samples/sec: 2310.54 - lr: 0.000000 - momentum: 0.000000
|
484 |
+
2023-10-23 19:18:52,370 ----------------------------------------------------------------------------------------------------
|
485 |
+
2023-10-23 19:18:52,371 EPOCH 10 done: loss 0.0050 - lr: 0.000000
|
486 |
+
2023-10-23 19:18:53,071 DEV : loss 0.2112000286579132 - f1-score (micro avg) 0.8385
|
487 |
+
2023-10-23 19:18:53,545 ----------------------------------------------------------------------------------------------------
|
488 |
+
2023-10-23 19:18:53,546 Loading model from best epoch ...
|
489 |
+
2023-10-23 19:18:55,021 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
490 |
+
2023-10-23 19:18:55,887
|
491 |
+
Results:
|
492 |
+
- F-score (micro) 0.8146
|
493 |
+
- F-score (macro) 0.5846
|
494 |
+
- Accuracy 0.7066
|
495 |
+
|
496 |
+
By class:
|
497 |
+
precision recall f1-score support
|
498 |
+
|
499 |
+
pers 0.8378 0.8921 0.8641 139
|
500 |
+
scope 0.8321 0.8837 0.8571 129
|
501 |
+
work 0.6593 0.7500 0.7018 80
|
502 |
+
loc 1.0000 0.3333 0.5000 9
|
503 |
+
date 0.0000 0.0000 0.0000 3
|
504 |
+
|
505 |
+
micro avg 0.7942 0.8361 0.8146 360
|
506 |
+
macro avg 0.6659 0.5718 0.5846 360
|
507 |
+
weighted avg 0.7932 0.8361 0.8092 360
|
508 |
+
|
509 |
+
2023-10-23 19:18:55,887 ----------------------------------------------------------------------------------------------------
|