stefan-it's picture
readme: add initial version of model card (#1)
246ed96
---
language: de
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-base-historic-multilingual-64k-td-cased
widget:
- text: Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in
den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging
, das Stück Σαλαμίνιαι folgte .
---
# Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022)
This Flair model was fine-tuned on the
[AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
NER Dataset using hmBERT 64k as backbone LM.
The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
project.
The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.
# Results
We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:
* Batch Sizes: `[4, 8]`
* Learning Rates: `[5e-05, 3e-05]`
And report micro F1-score on development set:
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|-------------------|-----------------|--------------|--------------|-------------|--------------|-----------------|
| `bs4-e10-lr3e-05` | [**0.8806**][1] | [0.8988][2] | [0.8967][3] | [0.8924][4] | [0.8994][5] | 0.8936 ± 0.0078 |
| `bs8-e10-lr5e-05` | [0.8951][6] | [0.8972][7] | [0.8933][8] | [0.8892][9] | [0.8902][10] | 0.893 ± 0.0033 |
| `bs4-e10-lr5e-05` | [0.8789][11] | [0.891][12] | [0.9012][13] | [0.891][14] | [0.8873][15] | 0.8899 ± 0.008 |
| `bs8-e10-lr3e-05` | [0.88][16] | [0.8889][17] | [0.8764][18] | [0.897][19] | [0.8948][20] | 0.8874 ± 0.009 |
[1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_64k-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.
More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).
# Acknowledgements
We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.
Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️