simpletuner-lora / README.md
stazizov's picture
Model card auto-generated by SimpleTuner
36b4ce5 verified
|
raw
history blame
4.1 kB
---
license: other
base_model: "stabilityai/stable-diffusion-3.5-medium"
tags:
- sd3
- sd3-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'A cute, anime-style character with cat ears and silver hair stands in a cozy kitchen, holding a large pillow in a playful, pouting pose, anime in real life'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'A cute anime character sits at a table with delicious dishes of fried chicken and rice, surrounded by drinks and a busy street view outside, anime in real life'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'A girl with long blonde hair sleeps peacefully on a couch, with a foggy city view visible through the window, anime in real life'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'A cozy room with a bed and soft pillows, featuring an animated character lying happily on the blanket, surrounded by simple decor, anime in real life'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
---
# simpletuner-lora
This is a LyCORIS adapter derived from [stabilityai/stable-diffusion-3.5-medium](https://huggingface.co./stabilityai/stable-diffusion-3.5-medium).
No validation prompt was used during training.
None
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 33
- Training steps: 6000
- Learning rate: 5e-05
- Max grad norm: 0.01
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: No
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 16,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 16
},
"FeedForward": {
"factor": 8
}
}
}
}
```
## Datasets
### anime_irl
- Repeats: 0
- Total number of images: 178
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "An astronaut is riding a horse through the jungles of Thailand."
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```